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Abstract—A deep-learning-aided successive-cancellation list
(DL-SCL) decoding algorithm for polar codes is introduced
with deep-learning-aided successive-cancellation (DL-SC) decod-
ing being a specific case of it. The DL-SCL decoder works
by allowing additional rounds of SCL decoding when the first
SCL decoding attempt fails, using a novel bit-flipping metric.
The proposed bit-flipping metric exploits the inherent relations
between the information bits in polar codes that are represented
by a correlation matrix. The correlation matrix is then optimized
using emerging deep-learning techniques. Performance results on
a polar code of length 128 with 64 information bits concatenated
with a 24-bit cyclic redundancy check show that the proposed
bit-flipping metric in the proposed DL-SCL decoder requires up
to 66% fewer multiplications and up to 36% fewer additions,
without any need to perform transcendental functions, and
by providing almost the same error-correction performance in
comparison with the state of the art.

Index Terms—5G, polar codes, deep learning, SC, SCL, SC-
Flip, SCL-Flip.

I. INTRODUCTION

Polar codes represent a class of error-correcting codes that
are proven to achieve channel capacity for any binary symmet-
ric channel under the low-complexity successive-cancellation
(SC) decoding [1]. Recently, polar codes are selected for use
in the enhanced mobile broadband (eMBB) control channel of
the fifth generation of cellular technology (5G standard), where
codes with short block length are used [2]. The error-correction
performance of short polar codes under SC decoding does
not satisfy the requirements of the 5G standard. SC list
(SCL) decoding was introduced in [3] to improve the error-
correction performance of SC decoding by keeping a list of
candidate message words at each decoding step. In addition,
it was observed that under SCL decoding, the error-correction
performance is significantly improved when the polar code is
concatenated with a cyclic redundancy check (CRC) code [3].
However, the decoding complexity of SCL grows as the list
size increases.

Unlike SCL decoding, SC flip (SCF) decoding [4] performs
multiple SC decoding attempts in series where in each attempt,
the first-order erroneous information bit in the initial SC
decoding attempt is flipped. Similar to SCL decoding, SCF
decoding uses a CRC code to determine whether a decoding
attempt is successful or not and a bit-flipping metric is used
to identify the erroneous information bit. Several methods
have been proposed to improve the error-correction perfor-
mance of SCF [5]–[7]. However, the bit-flipping metric of a

given information bit is oversimplified where only the log-
likelihood ratio (LLR) corresponding to that bit is considered.
To overcome this problem, dynamic SCF (DSCF) decoding
[8] defines a more accurate bit-flipping metric, which utilizes
the LLR values of all the previously decoded information
bits. It was shown in [8] that at practical signal-to-noise ratio
(SNR) values, DSCF decoding can achieve an error-correction
performance comparable to SCL decoding, while maintaining
an average decoding complexity close to that of SC decoding.
But the bit-flipping metric in DSCF decoding requires costly
exponential and logarithmic computations, which hinders the
algorithm to be efficiently implemented in hardware.

In this paper, the likelihood of the correct decoding of
each information bit under SC or SCL decoding is estimated
by exploiting the inherent correlations among all the infor-
mation bits. These correlations are expressed in the form
of a trainable correlation matrix. Consequently, a bit-flipping
metric based on the proposed correlation matrix is introduced.
It only requires the computation of multiplication and addi-
tion operations in the LLR domain, preventing completely
the needs to use costly transcendental functions as required
by DSCF decoding. Motivated by recent developments that
exploit deep learning (DL) to decode polar codes [9]–[13],
DL techniques are applied to optimize the correlation matrix.
Thus the proposed decoding algorithm is called deep-learning-
aided SCL (DL-SCL) decoding with DL-SC decoding being
its specific case when the list size is one. Performance results
on a polar code of length 128 with 64 information bits
concatenated with a 24-bit CRC show that the proposed bit-
flipping metric in the proposed DL-SCL decoder requires up
to 66% fewer multiplications and up to 36% fewer additions in
comparison with the decoder that uses the bit-flipping metric
in [8]. Moreover, the proposed decoder with the proposed bit-
flipping metric does not require to perform any transcendental
functions and can provide almost the same error-correction
performance in comparison with the decoder that uses the bit-
flipping metric in [8].

II. PRELIMINARIES

A. Polar Codes, SC Decoding, and SCL Decoding

A polar code P(N,K) of block length N with K
information bits is derived as x = uG⊗n, where
x = {x0, x1, . . . , xN−1} is the polar codeword, u =
{u0, u1, . . . , uN−1} is the message word, G⊗n is the n-th
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Fig. 1: (a) SC decoding on the factor graph of P(8, 5) with
Ac = {0, 1, 2}, (b) a PE.

Kronecker power of the polarizing matrix G =
[
1 0
1 1

]
, and

n = log2N . The vector u consists of a set A of the indices
of K information bits and a set Ac of the indices of N −K
frozen bits. The positions of frozen bits are known to both
the encoder and the decoder, and their values are set to 0.
In this paper, binary phase-shift keying (BPSK) modulation
technique is considered. Therefore, the received signals of the
transmitted codeword are represented as y = (1 − 2x) + z,
where 1 is an all-one vector of size N , and z ∈ RN is the
additive white Gaussian noise (AWGN) vector with variance
σ2 and zero mean. The LLR vector of the received signal is
then given as Ln = 2y

σ2 .
SC decoding can be illustrated on a polar code factor graph

representation. Fig. 1a shows an example of a factor graph
for P(8, 5). To obtain the estimated message word, the LLR
values and the hard bit estimations are propagated through
all the processing elements (PEs) in the factor graph that are
depicted in Fig. 1b. A PE performs LLR computations as

Ls,i=min(|Ls+1,i|, |Ls+1,i+2s |) sgn(Ls+1,i) sgn(Ls+1,i+2s),

Ls,i+2s =(1− 2v̂s,i)Ls+1,i + Ls+1,i+2s , (1)

where Ls,i and v̂s,i are the LLR value and the hard bit
estimation at the s-th stage, 0 ≤ s ≤ n, and the i-th bit,
0 ≤ i ≤ N − 1, respectively. The hard bit values of the PE
are computed as

v̂s+1,i = v̂s,i ⊕ v̂s,i+2s ,

v̂s+1,i+2s = v̂s,i+2s ,
(2)

where ⊕ denotes the logical XOR operation.
The LLR values at the n-th stage are initialized to Ln. In

SC decoding, the hard bit estimations at the 0-th stage are
calculated as

ûi = v̂0,i =

{
0 if i ∈ Ac,
1−sgn(L0,i)

2 otherwise.
(3)

In SCL decoding, at the 0-th stage, each information bit is
estimated as either 0 or 1 and at each decoding step, only M
most likely candidate paths are allowed to survive. After the
last bit is estimated in SCL decoding, the path with the highest
reliability metric is selected as the decoding result. If a CRC
of length c is used to help SCL decoding, after the last bit is
estimated, the path that passes the CRC verification is selected
as the decoding result.

B. SCF and DSCF Decoding

SCF decoding is used to decode a polar code that is
concatenated with a CRC of length c for verification. It starts
by performing SC decoding and if the CRC verification fails
after the initial SC decoding, it flips the bit estimation of an
information bit which has the smallest absolute LLR value
[4]. However, this simple bit-flipping metric prevents SCF
decoding to obtain a satisfactory error-correction performance
[8].

To determine the bit-flipping position, DSCF decoding
estimates the probability P ∗iω of the iω-th bit (iω ∈ A) being
the first-order error bit after the initial SC decoding attempt
as

P ∗iω = (1− p∗iω )×
∏

∀i∈A\iω
i<iω

p∗i , (4)

where p∗i is defined as

p∗i = Pr(ûi = ui|y, ûi−10 = ui−10 ), (5)

with ûi−10 = {û0, û1, . . . , ûi−1}, ui−10 = {u0, u1, . . . , ui−1}.
Therefore, the bit-flipping position i∗ω that maximizes the
probability of û being correctly decoded after the second SC
decoding attempt can be calculated as

i∗ω = arg max
∀iω∈A

P ∗iω . (6)

Note that p∗i cannot be obtained during the course of
decoding since the message word u is unknown to the decoder
[8]. Therefore, DSCF approximates p∗i as

p∗i ≈ max
(
Pr(ûi = 0|y, ûi−10 ),Pr(ûi = 1|y, ûi−10 )

)
=

1

1 + exp (−|L0,i|)
.

(7)

It was observed in [8] that the approximation in (7) does not
result in a desirable error-correction performance. Therefore,
a perturbation parameter α ∈ R+ is introduced to obtain a
better estimation of p∗i as

p∗i ≈
1

1 + exp (−α|L0,i|)
. (8)

To enable numerically stable computations for a hardware
implementation, the bit-flipping metric is defined as [8]

QDSCF(iω) = − 1

α
ln(P ∗iω )

= |L0,iω |+
∑
∀i∈A
i≤iω

1

α
ln (1 + exp (−α|L0,i|)). (9)
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Consequently, the most probable bit-flipping position i∗ω under
DSCF decoding can be found as

i∗ω = arg min
∀iω∈A

QDSCF(iω). (10)

In this paper, all the presented decoders only target the first-
order error bit. However, the bit-flipping selection schemes
presented in this paper can be directly extended to cover the
cases of high-order error bits [8], [13].

III. DEEP-LEARNING-AIDED
SUCCESSIVE-CANCELLATION DECODING

In this section, a general bit-flipping algorithm for SCL
decoding of polar codes is proposed, with the special case
of the bit-flipping algorithm for SC decoding when the list
size is 1. Moreover, a new bit-flipping metric is derived that
directly utilizes the correlations of the information bits in terms
of the likelihood that an information bit is correctly decoded.
A training framework is then introduced as the optimization
scheme to design the decoder’s parameters followed by the
evaluation of the proposed scheme.

A. A Bit-Flipping Algorithm for SCL decoding

Consider a failure in the SCL decoding with list size M
as the SCL decoding attempt in which all the M decoding
paths fail the CRC verification. Let û[m], 0 ≤ m < M , be
the m-th candidate path after the first SCL decoding, û[0]
be the best path after the first SCL decoding attempt, i.e. the
path with the smallest path metric [14], and let i∗ω be the
estimated first erroneous bit of û[0]. In the proposed scheme,
a secondary SCL decoding attempt is performed by keeping
only û[0] and fixing all the information bits before the i∗ω-th
bit. This is because all the estimated information bits before
i∗ω-th are believed to be correct, and the i∗ω-th bit is flipped to
correct the first error bit of û[0].

The information bits for the second SCL decoding attempt
up to the i∗ω-th bit are fixed as

û[m]i =

{
û[0]i if i ∈ A, i < i∗ω,

1− û[0]i if i ∈ A, i = i∗ω,
(11)

for 0 ≤ m < M . After the i∗ω-th information bit, the conven-
tional SCL decoding procedure is performed by estimating
each information bit i > i∗ω, i ∈ A as both 0 and 1 and by
keeping the best M paths at each decoding step. The path
metrics of all the decoding paths are then given as [14]

PM[m]i = PM[m]i−1 + ∆, (12)

where 0 ≤ i < N , PM[m]−1 = 0, and ∆ ≥ 0 is the path
metric penalty at the i-th bit that is calculated as

∆ =

{
|L[m]0,i|(1−sgn(L[m]0,i))

2 if i ∈ Ac,
|L[m]0,i|(1−(1−2û[m]i) sgn(L[m]0,i))

2 otherwise,
(13)

where L[m]0,i is the LLR value of the i-th bit at the m-th
path.

Note that the bit-flipping metric of DSCF can be used to es-
timate i∗ω . However, this approach requires costly logarithmic

and exponential functions, hence they are not attractive for
an efficient hardware implementation. In the next subsection,
a novel bit-flipping metric is proposed that only requires
multiplication and addition operations.

B. The Proposed Bit-Flipping Metric

Unlike the DSCF decoder which relies on the estimation
of the probability p∗i ,∀i ∈ A, for the bit-flipping metric
computation, a method is proposed to directly estimate the
following likelihood ratio

l∗iω = max

{
Pr(û[0]iω = 0|y,u)

Pr(û[0]iω = 1|y,u)
,

Pr(û[0]iω = 1|y,u)

Pr(û[0]iω = 0|y,u)

}
.

(14)
The value l∗iω indicates how likely the estimated message bit
û[0]iω is correctly decoded given the received signal y and
the message word u. The bit index i∗ω which is most likely to
be the first-order erroneous bit is then obtained as

i∗ω = arg min
∀iω∈A

l∗iω . (15)

Similar to p∗i , the value of l∗iω is not available during the decod-
ing process as u remains unknown to the decoder. Therefore,
the following hypothesis is proposed for the estimation of l∗iω :

l∗iω ≈
∏
∀i∈A

l
βiω,i

i , (16)

where

li = max

{
Pr(ûi = 0|y, ûi−10 )

Pr(ûi = 1|y, ûi−10 )
,

Pr(ûi = 1|y, ûi−10 )

Pr(ûi = 0|y, ûi−10 )

}
= exp |L0,i|,

(17)

and βiω,i ∈ R are perturbation parameters such that
βiω,i = βi,iω and βiω,iω = 1, for i ∈ A and iω ∈ A.

To enable numerically stable computations, the bit-flipping
metric of the proposed decoder can be obtained by transform-
ing the likelihood ratio l∗iω to the LLR domain as

QDL-SCL(iω) = ln(l∗iω )

≈ ln

( ∏
∀i∈A

exp (βiω,i|L0,i|)

)
=
∑
∀i∈A

βiω,i|L0,i|.

(18)

The most probable bit-flipping index i∗ω can then be selected
as

i∗ω = arg min
∀iω∈A

QDL-SCL(iω). (19)

Note that the bit-flipping metric computation in (18) can be
represented in the matrix form as

QDL-SCL = |L0| · β, (20)

where QDL-SCL and L0 are row vectors of size 1× (K + c),
and β is a matrix of size (K + c)× (K + c). Equivalently, i∗ω
is the index of the element in QDL-SCL that has the smallest
value.

534



With βiω,iω = 1 and βiω,i = βi,iω , 0 ≤ i, iω < K + c, β
can be seen as a correlation matrix that captures the inherent
relations of the absolute LLR values of all the information
bits under SCL decoding. For the sake of simplicity, since
only the LLR values of information bits are considered, all of
the bit indices used in the rest of this paper are referred to as
information bit indices, and therefore have the values in the
range of [0,K + c− 1].

C. Parameter Optimization

Note that βiω,iω is fixed to 1 and is not trainable for
all 0 ≤ iω < K + c. On the other hand, other ele-
ments of the matrix β are trainable with a condition that
βiω,i = βi,iω , 0 ≤ i, iω < K + c. In the proposed DL-SCL
decoding, the number of trainable parameters of the matrix
β is (K+c)(K+c−1)

2 , which is too large to efficiently apply
heuristic methods such as Monte Carlo simulation for parame-
ter optimization. Therefore, the optimization of β is considered
as a learning problem and DL techniques are exploited to
optimize β. The bit-flipping metric QDL-SCL of the proposed
decoder does not depend on the values of the message word
u. Thus, all-zero codewords can be used during the training
phase. This symmetric property is particularly useful for DL-
based decoders of linear block codes, as it simplifies the
training process [12], [13], [15].

Let T̂ be the estimated bit-flipping vector of the information
bits with −1 indicating a bit-flip and +1 indicating no bit-flip.
From (19), the elements of the vector T̂ are defined as

T̂i =

{
−1 if i = i∗ω,

+1 if i 6= i∗ω,
(21)

for 0 ≤ i < K + c. In this paper, stochastic-gradient-descent
(SGD) based techniques are used to update the values of
β during training, thus the computation of T̂ is modified
to enable back-propagation during training [13]. Otherwise,
learning is not feasible as the derivative of (21) with respect
to QDL-SCL[i], i.e., the i-th element of QDL-SCL, is always 0.

Let the soft estimation of T̂i be

T̃i = tanh(QDL-SCL[i]− τ), (22)

where τ = τ0+τ1
2 , and τ0 and τ1 are the smallest and the

second smallest values of QDL-SCL, respectively. The objective
loss function is then defined as

Loss =
1

K + c

K+c−1∑
i=0

L

(
1− T̃i

2
,

1− Ti
2

)

+ λ

K+c−1∑
iω=0

K+c−1∑
i=iω+1

(βiω,i)
2,

(23)

where L(a, b) = −b log(a)− (1− b) log(1− a) is the binary
cross-entropy function, and λ is the scaling factor of the L2
regularization [16].

In this paper, PyTorch [17] is used as the DL framework.
Training is done using RMSprop optimizer [18] with a mini-
batch size of 128 and a learning rate of 10−4. The training

4 4.5 5 5.5 6 6.5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

FE
R

DL-SCL1 DL-SCL2 DL-SCL4 DL-SCL8

SCLF1 [8] SCLF2 [8] SCLF4 [8] SCLF8 [8]

SCL1 [14] SCL2 [14] SCL4 [14] SCL8 [14]

Fig. 2: FER comparison of various decoders for P(128, 64)
concatenated with a 24-bit CRC.

set consists of 218 samples of the received channel signals,
which are not correctly decoded after the first SCL decoding
attempt, and the data is collected at Eb/N0 = 5 dB. The L2
regularization hyperparameter λ is set to 0.25. The initial
values of the non-diagonal elements of β are drawn from
an i.i.d distribution within the range of [−0.2, 0.2] before
training takes place. The matrix β is trained for list sizes
M ∈ {1, 2, 4, 8}1.

D. Evaluation

In this section, the performance of the proposed DL-SCL
decoder in terms of frame-error-rate (FER) and computational
complexity is examined. The polar code P(128, 64) concate-
nated with a 24-bit CRC is considered. The selected polar
code and the CRC polynomial are used in the eMBB control
channel of the 5G standard [2].

Fig. 2 compares the FER performance of various decoders
for P(128, 64). In this figure, DL-SCLM denotes the proposed
DL-SCL decoding algorithm with list size M = {1, 2, 4, 8},
and the bit-flipping SCL decoder with the bit-flipping metric
proposed in [8] is denoted as SCLFM . In addition, the original
SCL decoding in [14] is also considered for the comparison.
For all the bit-flipping SCL decoders, 8 additional decoding
attempts are considered for the secondary SCL decoding. As
observed from Fig. 2, the proposed bit-flipping metric in
the proposed DL-SCL decoders results in almost no FER
performance loss compared to that of the SCLF decoders.

Fig. 3 visualizes the values of the elements in matrix β−I
in the form of a heat map2, where I is the identity matrix with
the same size as β. It can be seen that β−I (and thus β) is a
sparse matrix with many of its elements having a value close

1Optimized β matrices are available at
https://github.com/nghiadt05/DLSCL-CorMatrices

2Matrix β−I is shown to exclude the diagonal elements of β which have
a value of 1.
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Fig. 3: Visualization of β − I for the DL-SCL8 decoder.

TABLE I: Computational complexity of the bit-flipping metric
for P(128, 64) in terms of the number of operations performed

Decoders × + ln/exp

SCLFM 7832 4004 7832

DL-SCL1 2652 2564 0

DL-SCL2 3116 3028 0

DL-SCL4 3238 3150 0

DL-SCL8 3176 3088 0

to 0. This observation is exploited to reduce the computational
complexity of computing the proposed bit-flipping metric,
which in turn reduces the computational complexity of the
proposed DL-SCL decoding algorithm.

Table I reports the computational complexity of the pro-
posed bit-flipping metric of the DL-SCL decoder in compar-
ison with that of the SCLF decoder in terms of the number
of different operations performed. Other than the bit-flipping
metric, the proposed DL-SCL decoder and the SCLF decoder
are identical. In this table, all the elements of β which
have a value in the range [−10−4, 10−4] are set to 0, thus
removing the need to perform additions or multiplications
over those elements, without tangibly degrading the error-
correction performance. It can be seen that the bit-flipping
metric computation in the proposed DL-SCL decoders require
up to 66% fewer multiplications and up to 36% fewer additions
in comparison with that of the SCLF decoder. Moreover,
unlike SCLF decoder, the proposed bit-flipping metric in the
DL-SCL decoders does not require the computation of any
transcendental functions.

IV. CONCLUSION

In this paper, a deep-learning-aided successive-cancellation
list (DL-SCL) decoding algorithm for polar codes is in-
troduced. The proposed decoder improves the performance
of successive-cancellation list (SCL) decoding by running
additional SCL decoding attempts using a novel bit-flipping
scheme. The bit-flipping metric of the proposed decoder is
obtained by exploiting the inherent relations between the
information bits. These relations are expressed in the form

of a trainable correlation matrix, which is optimized using
deep-learning (DL) techniques. Performance results on a polar
code of length 128 and rate 1/2 show that the proposed bit-
flipping metric in the proposed DL-SCL decoder requires up
to 66% fewer multiplications and up to 36% fewer additions
in comparison with the state of the art, while providing almost
the same error-correction performance.
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