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Abstract—In this paper we address the problem of selecting
factor-graph permutations of polar codes under belief propaga-
tion (BP) decoding to significantly improve the error-correction
performance of the code. In particular, we formalize the factor-
graph permutation selection as the multi-armed bandit problem
in reinforcement learning and propose a decoder that acts like an
online-learning agent that learns to select the good factor-graph
permutations during the course of decoding. We use state-of-the-
art algorithms for the multi-armed bandit problem and show
that for a 5G polar codes of length 128 with 64 information bits,
the proposed decoder has an error-correction performance gain
of around 0.125 dB at the target frame error rate of 10−4, when
compared to the approach that randomly selects the factor-graph
permutations.

Index Terms—5G, polar codes, belief propagation, factor-graph
permutations, machine learning, reinforcement learning.

I. INTRODUCTION

Polar codes are a breakthrough in the field of channel coding
as they can achieve the capacity of any binary symmetric
channel with efficient encoding and decoding algorithms [1].
Successive cancellation (SC) and belief propagation (BP)
decoding algorithms were introduced in [1] to decode polar
codes. Although SC decoding can provide a low-complexity
implementation, its serial nature prevents the decoder to reach
a high decoding throughput. Furthermore, the error-correction
performance of SC decoding for short to moderate polar codes
does not satisfy the requirements of the fifth generation of
cellular mobile communications (5G) standard. To improve
the error-correction performance of SC decoding, SC list
(SCL) decoding was introduced in [2] and it was shown that
SCL can provide a significant error-correction performance
improvement if it is concatenated with a cyclic redundancy
check (CRC). Based on this observation, polar codes have
been selected to be used in the enhanced mobile broadband
(eMBB) control channel of 5G together with a CRC [3].

Unlike SC-based decoders, the iterative message passing
process of BP decoding can be executed in parallel, hence
enabling the decoder to reach high decoding throughput.
However, the conventional BP decoding algorithm suffers from
poor error-correction performance. It has been shown that if
polar codes are concatenated with a CRC, the error-correction
performance of them under BP decoding can be significantly
improved by exploiting the extrinsic information between the
factor graphs of polar codes and the CRC [4], [5]. In addition,
by using multiple independent permutations of the factor-graph
of polar codes, the error-correction performance of them under
BP decoding is significantly improved [5]–[9]. However, the

selection of good factor-graph permutations for polar codes
that result in a correctly decoded codeword given a specific
channel output realization remains an open research problem.

In this paper, we first formalize the selection of factor-graph
permutations of polar codes under the CRC-aided (CA) BP
(CABP) decoder in [4] as a multi-armed bandit problem in
reinforcement learning (RL). We then utilize state-of-the-art
algorithms designed for the multi-armed bandit problem to
select the factor-graph permutations of polar codes that work
best under CABP decoding. Unlike existing approaches, such
as using genetic algorithm [5] or Monte Carlo-based methods
[8], [9], in which the mechanism for the selection of factor-
graph permutations requires off-line training, the proposed
approach treats the CABP-based decoding of polar codes as an
online-learning agent that learns to select the good factor-graph
permutations during the course of decoding. We show that for
a 5G polar code of length 128 with 64 information bits and
concatenated with a 16-bit 5G CRC, the proposed RL-aided
CABP (RL-CABP) decoding algorithm has an error-correction
performance gain of around 0.125 dB, at the target frame error
rate (FER) of 10−4, compared to the approach that selects the
factor-graph permutations of polar codes randomly.

The remainder of the paper is as follows. Section II provides
background on polar codes and BP-based decoding algorithms.
Section III summarizes the multi-armed bandit problem and its
state-of-the-art algorithms. Section IV introduces the proposed
decoding algorithm, followed by the experimental results
provided in Section V. Finally, concluding remarks are drawn
in Section VI.

II. POLAR CODES

A. Polar Encoding

A polar code P(N,K) of length N with K information
bits is constructed by applying a linear transformation to the
binary message word u = {u0, u1, . . . , uN−1} as x = uG⊗n

where x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is the
n-th Kronecker power of the polarizing matrix G =

[
1 0
1 1

]
, and

n = log2N . The vector u contains a set I of K information
bit indices and a set Ic of N − K frozen bit indices. The
positions of the frozen bits are known to the encoder and
the decoder and their values are set to 0. The codeword x
is then modulated and sent through the channel. In this paper,
binary phase-shift keying (BPSK) modulation and additive
white Gaussian noise (AWGN) channel model are considered.
Therefore, the soft vector of the transmitted codeword received
by the decoder is written as y = (1− 2x) + z, where 1 is an



all-one vector of size N , and z ∈ RN is a Gaussian noise vec-
tor with variance σ2 and zero mean. In the log-likelihood ratio
(LLR) domain, the LLR vector of the transmitted codeword is
given as L = ln Pr(x=0|y)

Pr(x=1|y) =
2y
σ2 .

B. Belief Propagation Decoding of Polar Codes

Fig. 1a illustrates BP decoding on a factor graph repre-
sentation of P(8, 5). The messages are iteratively propagated
through the processing elements (PEs) [10]. An update itera-
tion starts with a right-to-left message pass that propagates
the LLR values from the channel stage (right-most stage),
to the information bit stage (left-most stage), and ends with
the left-to-right message pass occurring in the reverse order.
Fig. 1b shows a PE with its corresponding messages, where
rs,i denotes a left-to-right message, and ls,i denotes a right-
to-left message of the i-th bit index at stage s. The update rule
for the right-to-left messages of a PE is [10]{

ls,i = f(ls+1,i, rs,i+2s + ls,i+2s),
ls,i+2s = f(ls+1,i, rs,i) + ls+1,i+2s ,

(1)

and for the left-to-right messages is{
rs+1,i = f(rs,i, ls+1,i+2s + rs,i+2s),
rs+1,i+2s = f(rs,i, ls+1,i) + rs,i+2s ,

(2)

where f(.) is the scaled min-sum function [11]:

f(x, y) = 0.9375× sgn(x) sgn(y)min(|x|, |y|). (3)

The BP decoding performs a predetermined Imax iterations
where the messages are propagated through all PEs in accor-
dance with (1) and (2). The LLR values at stage 0, denoted
as r0, are initialized as

r0,i =

{
0, if i ∈ I,
+∞, if i ∈ Ic,

(4)

and the LLR values at stage n, denoted as ln, are initialized as
ln = L. In addition, all the other left-to-right and right-to-left
messages of the PEs at the first iteration are set to 0. After
running Imax iterations, the decoder makes a hard decision on
the LLR values of the i-th bit at the information bit stage to
obtain the estimated message word as

ûi =

{
0, if r0,i + l0,i ≥ 0,
1, otherwise.

(5)

In this paper we consider the case where a CRC is concate-
nated to the polar code as in the 5G standard. After running BP
decoding on the factor-graph of polar codes for Imin iterations
(0 < Imin < Imax), a CRC verification is performed to early-
terminate the decoding process. In addition, the factor-graph
of CRC is utilized to further improve the error-correction
performance of polar codes under BP decoding in a way that
the extrinsic information of the factor-graphs of CRC and polar
codes is exchanged by running BP decoding on both factor-
graphs after the Imin-th iteration [4]. We refer to this algorithm
as CABP decoding.
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û2 x̂2
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Fig. 1: (a) Factor-graph representation of P(8, 5) with Ic =
{0, 1, 2}, (b) a PE for BP decoding.

C. Decoding Polar Codes on Factor-Graph Permutations

The error-correction performance of polar codes under
different decoding algorithms can significantly improve if the
decoding is performed independently on multiple factor-graph
permutations [5]–[9]. A factor-graph permutation, denoted as
πp (0 ≤ p < n!), is constructed by permuting the PE stages
of the polar codes factor graph [6]. For instance, Fig. 1a
shows the original factor graph of P(8, 5), denoted as π0 =
{s0, s1, s2}. Permuting the PEs in stage s1 and s2 in Fig. 1a
forms another factor-graph permutation, π1 = {s0, s2, s1}. It
was shown that there is a one-to-one mapping between the
factor-graph permutation and the bit-index permutation of the
original factor-graph [8]. Thus, the decoding of polar codes
on their permuted factor graphs can be performed by running
the decoder on the permuted bit-indices of the original factor
graph. This keeps the architecture of the decoder unchanged
[8].

In this paper, given πp and L, we use the technique
presented in [8] to form the corresponding permuted bit-
indices of the channel LLR values, Lπp . We then apply CABP
decoding on Lπp using the original factor-graph. Note that the
permuted soft messages of the information bit stage l0πp is
permuted back to l0 before running BP decoding on the CRC
factor-graph. Given L and πp, we consider CABP decoding
as a function and denote its output as û = CABP(L, πp).
In addition, throughout this paper, we refer to π0 as the
permutation corresponding to the original factor-graph.

III. MULTI-ARMED BANDIT PROBLEM

A multi-armed bandit problem, or a k-armed bandit problem
(k > 1), is an RL problem where an agent has to repeatedly
make a choice among k different actions (options). After
each action is performed, the agent receives a numerical
reward that is drawn from a distribution that depends on
the selected action. The agent’s objective is to maximize



the expected cumulative rewards over a time period [12].
Let A = {a1, a2, . . . , ak} be the set of actions and q∗(aj)
(1 ≤ j ≤ k) be the corresponding expected reward of an
action aj . q∗(aj) is called the value function and its value
is unknown to the agent. In this paper, we consider three
state-of-the-art algorithms designed for the multi-armed bandit
problem, namely, ε-greedy, upper confidence bound (UCB),
and Thompson sampling (TS).

A. ε-Greedy and UCB Algorithms

Let naj be the number of times that an action aj is
selected up to the t-th time step. If aj is selected at the t-
th time step, naj is updated as naj := naj + 1 [12]. Then,
the value function q∗(aj) is estimated as Qaj in accordance
with Qaj := Qaj +

1
naj

[
Rt −Qaj

]
, where Rt is the reward

received by selecting action aj at the t-th time step [12].
Initially, Qaj and aj are set to 0 (∀j, 1 ≤ j ≤ k). Given
the estimated expected rewards Qaj , an exploitation occurs
when the agent selects an action that has the largest expected
reward value [12]. On the other hand, an exploration occurs
when the agent selects any action that does not have the largest
expected reward value [12].

Let aj∗ be the action selected by the agent at the t-th time
step. Under the ε-greedy algorithm aj∗ is selected as [12]

aj∗ =

argmax
∀aj

Qaj with probability 1− ε,

arandom with probability ε,
(6)

where arandom is a random action drawn i.i.d. from A. On the
other hand, under the UCB algorithm aj∗ is selected as

aj∗ = argmax
∀aj

[
Qaj + c

√
ln t

naj

]
, (7)

where naj 6= 0 and c ∈ R+. If naj = 0, aj is considered as
an exploitation action. Note that ε and c control the degree of
exploration of the ε-greedy and UCB algorithms, respectively.

B. Thompson Sampling

Instead of estimating the expected reward value q∗(aj) as in
the ε-greedy and UCB algorithms, the TS algorithm directly
estimates the distribution of the reward value associated with
each action. In this paper, as Rt ∈ {0, 1} a Beta distribution
is used to estimate the reward’s distribution [13]. A Beta
distribution has two shape parameters: α, β ∈ R+, and a
different set of shape parameters is used for each action.
We denote a random sampling from the estimated reward
distribution of the j-th action as υaj = Beta(αaj , βaj ). At the
t-th time step, the TS algorithm first draws a random sample
from each of the estimated reward distributions. The agent then
selects the action aj∗ as aj∗ = argmax∀aj υaj . The shape
parameters corresponding to the selected action aj∗ are then
updated as αaj∗ := αaj∗ + Rt and βaj∗ := βaj∗ + Rt [13].
Initially, αaj = βaj = 1 (∀j, 1 ≤ j ≤ k) [13].

IV. SELECTION OF FACTOR-GRAPH PERMUTATIONS WITH
REINFORCEMENT LEARNING

This section first formalizes the selection of factor-graph
permutations for polar decoding as a k-armed bandit problem.
It then introduces the proposed decoding method that utilizes
the multi-armed bandit algorithms in Section III to select the
factor-graph permutations under CABP decoding.

A. Problem Formulation

Under BP decoding of polar codes, the original factor-graph
permutation π0 is empirically observed to have the best error-
correction performance compared to other factor-graph per-
mutations [6]. However, there are cases that a specific channel
output realization, which cannot be decoded using the original
factor-graph permutation, can be decoded using another factor-
graph permutation [6]. As the number of permutations, n!,
is large, running BP decoding on all of the permutations
is not possible in real applications. Instead, the decoding is
performed on a small set of M factor-graph permutations,
including the original factor-graph permutation [5]–[8].

Let an action aj ∈ A (1 ≤ j ≤ k) be a random selection
of M − 1 (M > 1) factor-graph permutations that do not
include the original factor-graph permutation. Consider the
CRC verification is not successful when CABP decoding is
performed on the original factor-graph permutation π0. The
proposed decoder then selects an action aj from the set A.
If one of the factor-graph permutations in aj results in a
successful CRC verification, a reward of 1 is given to the
decoder. Otherwise, if none of the permutations in aj results
in a successful CRC verification under CABP decoding, a
reward of 0 is given to the decoder. Therefore, among k sets of
predefined factor-graph permutations, i.e. k different actions,
the proposed decoding algorithm decides which set of factor-
graph permutations maximizes the reward during the course
of decoding. The selection of factor-graph permutations for
CABP decoding can thus be formalized as a k-armed bandit
problem as defined in Section III.

B. Reinforcement Learning-Aided CABP

The proposed decoding algorithm starts with the construc-
tion ofA, the set of k different actions, which is outlined in Al-
gorithm 1. Each action aj ∈ A contains M−1 random factor-
graph permutations. Formally, aj = {πj,1, πj,2, · · · , πj,M−1},
πj,t 6= π0 ∀j, t, where 1 ≤ j ≤ k, and 1 ≤ t ≤ M − 1.
A random factor-graph permutation is formed by randomly
permuting the PE stages of the original factor graph π0, which
is obtained by the RandShuffle function in Algorithm 1. The
number of all possible actions is

kmax =

(
n!− 1

M − 1

)
=

(n!− 1)!

(M − 1)!(n!−M)!
, (8)

which is generally intractable for practical values of n and
M . Therefore, only the subset A of all the possible actions
is considered. In fact, A is constructed by randomly sampling
from the complete set of actions as shown in Algorithm 1.



Algorithm 1: Forming the action set
Input : n, k,M
Output: A
// Define the original permutation

1 π0 ← {s0, s1, · · · , sn−1}
// Select M − 1 random permutations for each

action

2 A ← ∅
3 for j ← 1 to k do
4 aj ← ∅
5 for t← 1 to M − 1 do
6 πj,t ← RandShuffle(π0)
7 aj ← aj ∪ πj,t
8 A ← A∪ aj
9 return A

Note that after A is formed, the set of actions in A remains
unchanged during the course of decoding.

Algorithm 2 outlines the proposed RL-CABP decoding
algorithm, given the predefined set of actions A constructed in
Algorithm 1. The proposed RL-CABP decoder first initializes
the parameters of the multi-armed bandit algorithm depending
on its type, which is defined by the parameter Algo in Algo-
rithm 2. If Algo indicates the ε-greedy or UCB algorithms, the
parameters of the multi-armed bandit algorithm are initialized
as Qaj = naj = 0 ∀j, 1 ≤ j ≤ k. If the TS algorithm is
used, the set of parameters is initialized as αaj = βaj = 1 ∀j,
1 ≤ j ≤ k. Note that the initialization process is only carried
out once in the course of decoding.

Then, the proposed RL-CABP decoding applies CABP
decoding over the original factor-graph permutation π0. If the
CRC verification, which is obtained by the VerifyCRC func-
tion in Algorithm 2 is successful, the proposed decoder outputs
the estimated message word û and the decoding process is
terminated. Otherwise, the RL-CABP decoder selects an action
aj∗ from A, which contains a set of M − 1 random factor-
graph permutations as described in Algorithm 1. Depending
on the type of the algorithm, the function SelectAction
implements the selection criteria of the considered multi-
armed bandit algorithms as introduced in Section III. Note that
the SelectAction function can be performed in parallel with
the first CABP decoding attempt as there is no dependency
between them. Therefore, the selected action aj∗ can be
obtained in advance without adding a latency overhead to
the proposed decoding algorithm. Moreover, if the first CABP
decoding attempt over π0 is successful, the selected action aj∗
is discarded.

If the first CABP decoding attempt fails in the proposed
RL-CABP decoding algorithm, additional CABP decoding
attempts are sequentially carried over the factor-graph permu-
tations specified by aj∗ . As soon as the CRC verification is
successful after CABP decoding on one of the factor-graph
permutations in aj∗ , a reward of 1 is given to aj∗ , and the

Algorithm 2: RL-CABP Decoding
Input : L,A, k,M,Algo
Output: û
// Initialize the bandit parameters

1 InitBandit(k,Algo)
// Apply CABP decoding on π0

2 û← CABP(L, π0)
3 isCorrectπ0

← VerifyCRC(û)
// Select an action in advance

4 aj∗ ← SelectAction(A,Algo)
// If applicable, apply CABP decoding on the

permutations specified by aj∗

5 if (isCorrectπ0
= 0) then

6 isCorrectaj∗ ← 0
7 for t← 1 to M − 1 do
8 û← CABP(L, πj∗,t)
9 isCorrectaj∗ ← VerifyCRC(û)

10 if (isCorrectaj∗ = 1) then
11 break

// Update the bandit parameters associated

with aj∗

12 Rt ← isCorrectaj∗
13 UpdateBandit(Rt, aj∗ ,Algo)

14 return û

decoding outputs the estimated message word that satisfies
the CRC verification. On the other hand, if running CABP on
all of the permutations in aj∗ does not result in a successful
CRC test, a reward of 0 is given to aj∗ and the decoding is
declared unsuccessful. Finally, after each action selection, the
parameters associated with the selected action aj∗ are updated
using the UpdateBandit function. Note that the parameter
update process is based on the received reward and the type
of the mutli-armed bandit algorithm as provided in Section III.

V. EXPERIMENTAL RESULTS

In this section, the performance of various multi-armed
bandit algorithms used by the proposed RL-CABP decoding
is numerically evaluated. In addition, the error-correction
performance of the proposed RL-CABP decoding in terms of
FER is compared with that of other polar decoding techniques.
A complexity comparison of different multi-armed bandit al-
gorithms in the proposed RL-CABP decoding is also given. We
use P(128, 64) selected for the eMBB control channel of the
5G standard [3]. Furthermore, the polar code is concatenated
with a CRC of length 16, which is also used in 5G [3]. The
total number of factor-graph permutations used by all BP-
based decoders is set to 7. We set Imax = 100 and Imin = 50
for all BP-based decoding algorithms.

Fig. 2 illustrates the dependence of the average reward
on the parameters in ε-greedy and UCB algorithms for
P(128, 64). The simulation is carried out at Eb/N0 = 3.0 dB
and we set k = 500 for all multi-armed bandit algorithms.
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Fig. 2: A parameter study of the ε-greedy and UCB algorithms.
The average reward is obtained for the first 10000 time steps
with k = 500 at Eb/N0 = 3.0 dB.
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Fig. 3: The impact of k on the performance of different
multi-armed bandit algorithms used by RL-CABP decoding
for P(128, 64), obtained for the first 10000 time steps.

In this figure, the average reward of the first 10000 time
steps received by the RL-CABP decoder is plotted against the
parameter value. Note that a time step is increased by 1 when
the multi-armed bandit algorithm is required for the action
selection, i.e., when CABP decoding has failed on the original
factor-graph permutation π0. As seen from Fig. 2, at ε = 2−4

and c = 2−3, RL-CABP decoding has the highest average
reward value for ε-greedy and UCB algorithms, respectively.
The TS algorithm does not require parameter tuning since α
and β parameters associated with each action are optimized
during the decoding process.

Fig. 3 illustrates the performance of multi-armed bandit
algorithms used by RL-CABP decoding with different values
of k. This simulation is also carried out at Eb/N0 = 3.0 dB.
We set ε = 2−4 for the ε-greedy algorithm and c = 2−3

for the UCB algorithm as those configurations provide the
best performance in Fig. 2. It can be observed that for all the
bandit algorithms, k = 500 provides the largest cumulative
reward after the first 10000 time steps. Thus, we set k = 500
for the rest of the paper.

Fig. 4 illustrates the average cumulative reward over the first
10000 time steps for all the multi-armed bandit algorithms.
The simulation is performed at Eb/N0 = 3.0 dB with k = 500,
ε = 2−4, and c = 2−3. It can be seen that the ε-greedy
algorithm has the best performance in terms of the average
cumulative reward. In addition, the UCB algorithm performs
slightly better than the TS algorithm. Note that the spikes
in the early part of the curves are caused by the small
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Fig. 4: Performance comparison of various multi-armed bandit
algorithms used by RL-CABP decoding. The simulation is
obtained at Eb/N0 = 3.0 dB with k = 500, ε = 2−4, and
c = 2−3.

value of the time step, which makes the calculation of the
average cumulative reward unreliable at the initial phases of
the algorithm.

Fig. 5 compares the FER of different factor-graph permuta-
tion selection schemes under the CABP decoding algorithm.
In this figure, CABP denotes the CABP decoding algorithm
performed only on the original factor-graph permutation. CP-
CABP and RP-CABP denote the cyclically-shifted and random
factor-graph permutations selection schemes proposed in [6]
and [7], respectively. Note that as there are n = 7 cyclically-
shifted permutations for P(128, 64), we set the number of
additional random permutations used by RP-CABP to 6, and
M = 7 for the proposed RL-CABP decoder for a fair
comparison. It can be seen that the proposed RL-CABP
decoder under various multi-armed bandit algorithms has a
similar FER performance. When compared with CP-CABP
and RP-CABP, an error-correction performance gain of at least
0.125 dB is obtained at the target FER of 10−4. In addition,
an FER gain of around 0.62 dB is obtained when the proposed
RL-CABP decoding algorithm is compared with the baseline
CABP decoder at the FER of 10−4.

Fig. 6 compares the error-correction performance of the
proposed RL-CABP decoding with BP decoding and CA-SCL
decoding of polar codes. In Fig. 6, CA-SCLL indicates the
CA-SCL decoder with a list size of L. It can be observed
that at the target FER of 10−4, the FER performance of the
proposed RL-CABP decoder is around 0.92 dB better than
that of the BP decoding algorithm in [11]. At the same target
FER, CA-SCL4 provides a better error-correction performance
in comparison with the proposed RL-CABP decoder. However,
compared with CA-SCL2 at the same target FER, the proposed
decoder has a performance gain of around 0.12 dB, under
different multi-armed bandit algorithms.

Table I shows the maximum number of computations
required by various permutation selection schemes used in
Fig. 5. Among all the multi-armed bandit algorithms, the ε-
greedy algorithm in general has the lowest computational com-
plexity. This is because the TS algorithm requires a sampling
process for k different Beta distributions, which in general
requires higher computational complexity than applying an
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Fig. 5: Error-correction performance of different factor-graph
permutation selection schemes for P(128, 64).
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Fig. 6: Error-correction performance of RL-CABP decoding
and other decoding algorithms of polar codes.

i.i.d. sampling from the interval of (0, 1) and doing a mul-
tiplication as required by the ε-greedy algorithm. In addition,
although using the cyclically-shifted factor-graph permutations
does not consume any additional complexity for the factor-
graph permutation selection, this technique is not applicable
when more than n different permutations are required. It can
also be observed that the main drawback of the multi-armed
bandit algorithms is the sorting operations required to identify
the exploitation action. However, as described in Section IV-B,
the action selection process can be performed in parallel
with the first CABP decoding attempt. Therefore, there is no
additional latency overhead. Furthermore, the approaches in
[6] and [7] come with the cost of error-correction performance
degradation when compared with the proposed RL-CABP
decoder as illustrated in Fig. 5.

VI. CONCLUSIONS

In this paper, we first showed that the selection of factor-
graph permutations for polar decoding can be formalized as
a multi-armed bandit problem in RL. We then proposed an
RL-CABP decoding algorithm that utilizes the state-of-the-
art algorithms for the multi-armed bandit problem to select
the factor-graph permutations under CABP decoding of polar
codes. We showed that for a 5G polar code of length 128,

TABLE I: Computational complexity of different permutation
selection schemes in terms of the maximum number of oper-
ations performed

Operations [6] [7] ε-greedy UCB TS

+ 0 0 2 2 + k 2
− 0 0 1 1 0
× 0 0 1 1+k 0
÷ 0 0 0 k 0√
. 0 0 0 k 0

ln 0 0 0 k 0
Random sampling 0 M − 1 1 0 k
Sorting 0 0 k k k

with 64 information bits and concatenated with a 16-bit 5G
CRC, the FER of the proposed decoder is around 0.125 dB
better than that of the technique that selects the factor-graph
permutations randomly, at the target FER of 10−4. In addition,
we showed that there is no additional latency overhead for
the selection of factor-graph permutations of the proposed
decoder compared with the approach that selects the factor-
graph permutations at random.
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