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Background

I Polar codes: selected for the eMBB control channel in 5G

I Cyclic redundancy check (CRC) is concatenated with polar
codes in 5G for error detection

I Belief Propagation (BP): reasonable error-correction
performance, highly parallel

→ high decoding throughput
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Polar codes

I Introduced by Arıkan in 2009

I P(N,K ), N: code length, K : message length

I Code construction: based on polarization phenomenon

I K most reliable channels: information bits
I (N − K ) least reliable channels: frozen bits

P(8, 5) with u0, u1, and u2 are frozen bits

E. Arıkan, ”Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input
Memoryless Channels”, IEEE Trans. on Info. Theory, vol. 55, no. 7, pp. 30513073, July 2009.
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CRC-Aided BP (CABP) Decoder of Polar Codes

I Exploit the extrinsic information of the CRC-polar factor graphs

I Perform BP decoding on the polar factor graph Ith iterations

I Unsatisfied CRC test: run BP decoding on the CRC graph

N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross, Neural belief propagation decoding of
CRC-polar concatenated codes, IEEE Int. Conf. on Commun., pp. 16, May 2019.
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Polar Decoding with Permuted Factor Graphs

I Permuting the PE layers of the polar code factor graph does not
change the code

I The error probability of BP decoding can be improved by using
different factor graph permutations

I Open problem: Under a specific channel output, select a factor
graph that results in a correct codeword.

Random factor-graph permutations of polar codes
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Previous Work

I Cyclic factor-graph permutations [a]

I Random factor-graph permutations [b]

I Monte Carlo based methods [c-e]

→ require a pre-construction
of the factor graphs

[a] N. Hussami, S. B. Korada, and R. Urbanke, Performance of polar codes for channel and source coding, in IEEE
Int. Symp. on Inf. Theory, 2009, pp. 14881492.
[b] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, Belief propagation decoding of polar codes on permuted
factor graphs, in IEEE Wire. Commun. and Net. Conf., April 2018, pp. 16.
[c] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, On the decoding of polar codes on permuted factor
graphs, IEEE Global Commun. Conf., pp. 16, Dec 2018.
[d] Y. Ren, Y. Shen, Z. Zhang, X. You, and C. Zhang, Efficient belief propagation polar decoder with loop
simplification based factor graphs, IEEE Trans. Vehic. Tech., 2020.
[e] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, CRC-aided belief propagation list
decoding of polar codes, IEEE Int. Sym. on Inf. Theory, 2020.
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Decoding of Polar Codes with Reinforcement Learning

I Given a channel output y , select a set of T ”good” factor-graph
permutations for CABP during the decoding

I Formalize the factor-graph permutation selection as a
multi-armed bandit problem→ use state-of-the-art bandit
algorithms to solve the problem
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Decoding of Polar Codes with Reinforcement Learning

I Generate k random actions (sets of permutations)

I Each action contains the original permutation and a set of T − 1
random permutations

I The decoder selects a set of permutations (an action) to perform
CABP decoding
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Decoding of Polar Codes with Reinforcement Learning

I Definitions:

I aj : an action index (permutation set index)
I naj : the number of times that action aj has been selected
I vaj : the estimated value of selecting action aj (how good

action aj is)
I (αj , βj): a pair of shape parameters for a Beta distribution in

[0,1] associated with action aj , initially αj = βj = 1 ∀j
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Decoding of Polar Codes with Reinforcement Learning

I Action selection:

I ε−Greedy

a∗ =

{
argmax∀aj

vaj with prob. 1− ε (exploitation)
arandom with prob. ε (exploration)

I Upper Confidence Bound (UCB)

a∗ = argmax
∀aj

 vaj︸︷︷︸
exploitation

+ c

√
ln t
naj︸ ︷︷ ︸

exploration
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Decoding of Polar Codes with Reinforcement Learning

I Action selection:

I Thompson Sampling (TS)

vaj = BetaDist(αj , βj)

An action k is then selected as a∗ = argmax∀j vaj

I The action selection can be obtained prior to the actual
decoding.
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Decoding of Polar Codes with Reinforcement Learning

I Parameter update:

I Ea∗ : the event that taking action a∗ results in a
CRC-satisfied codeword.

I 1Ea∗ = 1 if Ea∗ occurs and 1Ea∗ = 0, otherwise.

I ε-Greedy and UCB:

va∗ := va∗ +
1Ea∗ − va∗

na∗

I Thompson Sampling (TS):

αk := αk + 1− 1Eak

βk := βk + 1Eak
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Decoding of Polar Codes with Reinforcement Learning
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Performance comparison of various multi-armed bandit algorithms
used by RL-CABP decoding. The simulation is obtained at
Eb/N0 = 3.0 dB with k = 500, ε = 2−4, and c = 2−3.
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Decoding of Polar Codes with Reinforcement Learning
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Error-correction performance of different factor-graph permutation
selection schemes for P(128,64) with a 24-bit CRC used in 5G (24C).
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Error-correction performance of RL-CABP decoding and other
decoding algorithms of polar codes.
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Decoding of Polar Codes with Reinforcement Learning

I Propose an algorithm that selects the good factor-graph
permutations during the course of decoding

I Significantly reduce the error-probability of BP decoding while
still maintain the parallelism property of BP decoding

I The factor-graph selection can be pipelined with the decoding
process
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Thank You!

Doan et. al Decoding of Polar Codes with Reinforcement Learning 16/16


