
Fast SC-Flip Decoding of Polar Codes with
Reinforcement Learning

Nghia Doan∗, Seyyed Ali Hashemi†, Furkan Ercan∗, Warren J. Gross∗
∗Department of Electrical and Computer Engineering, McGill University, Canada

†Department of Electrical Engineering, Stanford University, USA
nghia.doan@mail.mcgill.ca, ahashemi@stanford.edu, furkan.ercan@mail.mcgill.ca, warren.gross@mcgill.ca

Abstract—In this paper, we introduce a novel bit-flipping
algorithm for fast successive cancellation (FSC) decoding of polar
codes. In particular, we first propose a new bit-flipping strategy
tailored to single parity-check (SPC) constituent codes of polar
codes. A parameterized bit-flipping model is then developed and
reinforcement learning (RL) is used to optimize the parameters.
Our experimental results show that for a polar code of length 512
with 256 information bits, the proposed decoder has a better or
similar error-correction performance compared to the state-of-
the-art fast DSCF (FDSCF) decoding algorithm when the same
number of maximum decoding attempts is considered.

Index Terms—5G, polar codes, fast SC flip, machine learning

I. INTRODUCTION

Polar codes are the first type of linear block codes that
are proven to achieve the capacity of any binary symmetric
channel [1]. With this characteristic, polar codes, concatenated
with cyclic redundancy check (CRC) codes, are used in
the enhanced mobile broadband (eMBB) control channel of
the fifth generation of cellular wireless communication (5G)
standard [2]. Successive cancellation (SC) decoding is a low-
complexity algorithm introduced in [1] to decode polar codes.
However, its serial nature prevents the decoder to reach a high
decoding throughput. Fast SC (FSC) decoding algorithm was
introduced in [3], [4] to improve the high decoding latency
of SC decoding. However, for short to moderate code lengths
SC and FSC decoding algorithms do not provide a satisfactory
error-correction performance required by the 5G standard [2].

SC-Flip (SCF) decoding is an alternative algorithm used
to decode CRC-polar concatenated codes [5]. Given that the
initial SC decoding attempt does not satisfy the CRC verifica-
tion, SCF decoding identifies the first error bit of the initial SC
decoding and flips the estimated value of it in the following
decoding attempts. The key challenge of SCF decoding is to
accurately estimate the first error bit of the initial SC decoding.
Dynamic SCF (DSCF) decoding [6] tackles this challenge
by introducing a conditional error-probability model, which
greatly improves the prediction accuracy of the first error
bit, resulting in a significant error-correction performance im-
provement compared with SCF decoding. However, all SCF-
based decoders experience a high decoding latency, which is
inherently caused by the serial nature of SC decoding [7].

Several attempts have integrated fast decoding operations
to SCF decoding to improve its decoding latency [7]–[10].
It was shown in [7] that using the DSCF-based bit flipping

model for FSC decoding results in a better error-correction
performance than the decoders in [8]–[10]. In this paper, we
propose a novel bit-flipping algorithm for FSC decoding that
significantly improves the error-correction performance of the
decoder in [7]. In particular, a new bit-flipping strategy tailored
to single parity-check (SPC) constituent codes is proposed.
Furthermore, a new parameterized bit-flipping model based
on [11] is developed to exploit the inherent correlations of
the decoded bits under FSC decoding. We formalize the
parameter optimization of the proposed bit-flipping model as
an on-policy reinforcement learning (RL) problem and use RL
techniques [12] to optimize the parameters during the course of
decoding. Simulation results show that for a 5G polar code of
length 512 with 256 information bits and concatenated with
a 24-bit CRC, the proposed decoder has a better or similar
error-correction performance compared to the state-of-the-art
fast DSCF (FDSCF) decoding algorithm in [7], when the same
number of maximum decoding attempts is considered.

II. PRELIMINARIES

A. Polar Encoding

A polar code P(N,K) of length N with K information
bits is constructed by applying a linear transformation to the
binary message word u = {u0, u1, . . . , uN−1} as x = uG⊗n

where x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is the
n-th Kronecker power of the polarizing matrixG =

[
1 0
1 1

]
, and

n = log2N . The vector u contains a set I of K information
bit indices and a set Ic of N − K frozen bit indices. The
positions of the frozen bits are known to the encoder and the
decoder, and their values are set to 0. The codeword x is
then modulated and sent through the channel. In this paper,
binary phase-shift keying (BPSK) modulation and additive
white Gaussian noise (AWGN) channel model are considered.
Therefore, the soft vector of the transmitted codeword received
by the decoder is given as y = (1− 2x) + z, where 1 is an
all-one vector of size N , and z ∈ RN is a Gaussian noise vec-
tor with variance σ2 and zero mean. In the log-likelihood ratio
(LLR) domain, the LLR vector of the transmitted codeword is
given as αn = ln Pr(x=0|y)

Pr(x=1|y) = 2y
σ2 .

B. Successive Cancellation Decoding

SC decoding can be represented on a polar code fac-
tor graph representation. An example of a factor graph
for P(16, 8) is depicted in Fig. 1(a) with the frozen set



s0 s1 s2 s3 s4

u15 x15

u14 x14

u13 x13

u12 x12

u11 x11

u10 x10

u9 x9

u8 x8

u7 x7

u6 x6

u5 x5

u4 x4

u3 x3

u2 x2

u1 x1

u0 x0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

Stage Indices
B

it
In

di
ce

s

(a)
αs,i, βs,i αs+1,i, βs+1,i

αs,i+2s , βs,i+2s αs+1,i+2s , βs+1,i+2s=

(b)

Fig. 1: (a) Factor graph representation of P(16, 8), and (b) a
processing element (PE) of polar codes.

Ic = {0, 1, 2, 3, 4, 8, 9, 10}. To obtain the message word, the
soft LLR values and the hard bit estimations are prop-
agated through all the processing elements (PEs), which
are depicted in Fig. 1(b). Each PE performs the following
computations: αs,i = f(αs+1,i, αs+1,i+2s) and αs,i+2s =
g(αs+1,i, αs+1,i+2s , βs,i), where αs,i and βs,i are the soft
LLR value and the hard-bit estimation at the s-th stage and the
i-th bit, respectively, and the min-sum approximation formula-
tions of f and g are f(a, b) = min(|a|, |b|) sgn(a) sgn(b), and
g(a, b, c) = b+(1−2c)a. The hard-bit values of the PE are then
computed as βs+1,i = βs,i⊕βs,i+2s and βs+1,i+2s = βs,i+2s .
The soft LLR values at the n-th stage are initialized to αn
and the hard-bit estimation of an information bit at the 0-th
stage is obtained as ûi = β0,i =

1−sgn(α0,i)
2 , ∀i ∈ I.

C. Fast Successive Cancellation Decoding

SC decoding can also be illustrated in a binary tree repre-
sentation [3]. Fig. 2(a) shows a full binary tree representation
of P(16, 8), whose factor graph representation is depicted in
Fig. 1(a). In [3], [4] the authors identified special constituent
nodes of polar codes where maximum likelihood (ML) de-
coding can be performed to estimate the hard values of the
parent nodes without the need to traverse to the left and child
nodes. Therefore, the decoding latency of SC decoding can
be greatly reduced. In this paper, we consider four types of
special nodes, namely Rate-0, Rate-1, repetition (REP), and
SPC nodes [3], [4]. A parent node ν located at the s-th stage
(s > 0) of the binary tree contains Nν LLR values and Nν
hard decisions associated with this node, where Nν = 2s. Let
iminν and imaxν be the minimum and maximum indices of a
node ν located at the s-th stage (s > 0) of the polar code
binary tree, respectively, where 0 ≤ iminν < imaxν ≤ N − 1
and imaxν − iminν = Nν − 1. The LLR and hard values
associated with the parent node ν are given as αν =
{αs,iminν

, . . . , αs,imaxν
} and βν = {βs,iminν

, . . . , βs,imaxν
},

Stage Indices

B
it

In
di

ce
s

s0 s1 s2 s3 s4

u15

u14

u13

u12

u11

u10

u9

u8

u7

u6

u5

u4

u3

u2

u1

u0

Rate-1

REP

SPC

Rate-0

Tree
pruning

Stage Indices
s2 s3 s4

Rate-0

SPC

REP

Rate-1

(a) (b)

Fig. 2: (a) The full binary tree representation of P(16, 8) illus-
trated in Fig. 1(a), and (b) the pruned binary tree representation
of the same polar code.

respectively. The definitions and decoding operations of each
special node under FSC decoding are given as follows.

1) Rate-0 node: all the leaf nodes of a Rate-0 node are
frozen bits. Therefore, all the hard values associated with the
parent node are set to 0 [3].

2) Rate-1 node: all the leaf nodes of a Rate-1 node are
information bits, the hard decisions associated with ν are [3]

βs,i =

{
0 if αs,i > 0,

1 otherwise,
(1)

where iminν ≤ i ≤ imaxν .
3) REP node: all the leaf nodes of a REP node are frozen

bits, except for β0,imaxν
, which is estimated as [4]

ûimaxν
= β0,imaxν

=

{
0 if

∑imaxν
i=iminν

αs,i > 0,

1 otherwise.
(2)

4) SPC node: all the leaf nodes of an SCF node are
information bits, except for β0,iminν

. First, the hard decisions
associated with the parent node ν are calculated as [4]

βs,i =

{
0 if αs,i > 0,

1 otherwise,
(3)

where iminν ≤ i ≤ imaxν . Let pν =
⊕imaxν

i=iminν
βs,i

be the parity check sum of the SPC node and iν =
arg miniminν≤i≤imaxν

|αs,i| be the bit index of the least re-
liable bit in ν. The value of βs,iν is then updated as [4]

βs,iν := βs,iν ⊕ pν . (4)

Fig. 1(b) shows the pruned binary tree representation of
P(16, 8) depicted in Fig. 1(a), where all the considered special
nodes in this paper are illustrated.

D. SCF and Dynamic SCF Decoding Algorithms

The error-correction performance of SC decoding for short
to moderate polar codes is not satisfactory. To improve its
error-correction performance, a CRC of length C is concate-
nated to the message word of polar codes to check whether SC
decoding succeeded or not. If the estimated message word does



not satisfy the CRC after the initial SC decoding, a secondary
SC decoding attempt is made by flipping the estimation of the
first information bit that is most likely to be erroneous. In [5],
the index of the first error bit is estimated as

i∗e = arg min
∀i∈I

|α0,i|. (5)

This process can be performed multiple times by applying a
predetermined number of SC decoding attempts, with each
attempt flipping the estimation of a different information bit.
If the resulting message word after one of the SC decoding
attempts satisfies the CRC, the decoding is declared successful.
This algorithm is referred to as SCF decoding [5]. However,
the main challenge of SCF decoding is the poor prediction
accuracy of i∗e given in (5) [6]. To address this issue the authors
in [6] proposed the DSCF decoding algorithm, where a more
accurate bit-flipping metric is introduced and is written as [6]

Qi = |α0,i|+
∑
∀j∈I
j≤i

1

δ
ln [1 + exp (−δ|α0,j |)], (6)

where δ > 0 is a perturbation parameter and is set to 0.3 as
in [7]. The most probable bit-flipping position i∗e under the
DSCF decoding algorithm is then obtained as

i∗e = arg min
∀i∈I

Qi. (7)

The FDSCF decoding algorithm [7] improves the speed of
DSCF decoding by incorporating the idea of FSC decoding.

III. REINFORCEMENT-LEARNING-AIDED FAST
SUCCESSIVE-CANCELLATION-FLIP DECODING

In this Section, we first introduce the proposed bit-flipping
algorithm for FSC decoding that is tailored to the SPC nodes.
A parameterized bit-flipping model based on [11] is then
developed and RL techniques are used to train the parameters.
Finally, experimental results are provided to evaluate the
proposed algorithm.

A. Proposed Fast SCF Decoding Algorithm

The proposed decoding algorithm is based on the generation
of a specific vector of LLR values. Consider the first FSC
decoding attempt does not satisfy the CRC verification and
let ν be a node located at the s-th stage (s ≥ 0) of the polar
decoding tree that is visited by FSC decoding. We construct
a vector γ = {γ0, γ1, . . .} by the following procedure:
• If ν is a leaf node that contains an information bit:

γ := concat(γ, α0,iminν
). (8)

• If ν is a REP node:

γ := concat(γ,

imaxν∑
i=iminν

αs,i). (9)

• If ν is a Rate-1 node:

γ := concat(γ, αs,i), (10)

for all iminν ≤ i ≤ imaxν .

• If ν is an SPC node:

γ := concat(γ, αs,i), (11)

for all iminν ≤ i ≤ imaxν and i 6= iν , where iν =
arg miniminν≤i≤imaxν

|αs,i|.
Note that concat(γ, a) indicates a concatenation of a ∈ R to
the end of γ and γ = ∅ initially. Also note that the size of
γ at the end of the first FSC decoding attempt is K + C. In
addition, γ remains unchanged if ν does not satisfy any of the
above conditions.

The generation of γ allows us to directly predict the index
of the first erroneous bit in γ, denoted as i∗e . In the next FSC
decoding attempt, the proposed decoder flips the hard decision
associated with the i∗e-th LLR value in γ and continues the
FSC decoding operations. One important consequence of using
γ to predict the bit-flipping positions is for SPC nodes. In fact,
there is no need to perform a bit-flipping for the least reliable
bit of an SPC node. The value of this bit is calculated from
all the other bits in the SPC node to satisfy the parity-check
constraint (see (4)). Therefore, the hard decision value of the
least reliable bit is automatically adjusted when another bit in
an SPC node is flipped. As a result, the proposed algorithm
only considers Nν − 1 possibilities to identify a bit flip that
occurs in an SPC node. This is significantly smaller than the
maximum search space of size

(
Nν
2

)
required to flip a pair of

indices, especially as Nν increases.
To estimate i∗e , we utilize the approach in [11] and learn

the correlations of the LLR values in γ. Let ηi be the hard
decision value of γi and let l∗i be the likelihood ratio that ηi
is correctly decoded given y and u. l∗i is calculated as

l∗i = max

{
Pr(ηi = 0|y,u)

Pr(ηi = 1|y,u)
,

Pr(ηi = 1|y,u)

Pr(ηi = 0|y,u)

}
. (12)

i∗e is then obtained as

i∗e = arg min
∀i, 0≤i<K+C

l∗i . (13)

Since u is unknown, it is practically impossible to calculate
l∗i during the course of decoding. Thus, we estimate l∗i as [11]

l∗i ≈
∏

∀j, 0≤j<K

l
θi,j
j , (14)

where

lj = max

{
Pr(ηj = 0|y)

Pr(ηj = 1|y)
,

Pr(ηj = 1|y)

Pr(ηj = 0|y)

}
= exp(|γj |) (15)

and θi,j ∈ R are perturbation parameters such that θi,j = θj,i
and θi,i = 1, for 0 ≤ i, j < K + C. The perturbation
parameters are such that if there is a correlation between the
i-th and j-th decoded bits, θi,j and θj,i are nonzero values,
otherwise θi,j = θj,i = 0.

To enable numerically stable computations, the likelihood
ratio l∗i can be transformed to the LLR domain as

Mi = ln(l∗i ) ≈ ln

 ∏
∀j,0≤j<K

exp (θi,j |γj |)


=

∑
∀j,0≤j<K+C

θi,j |γj |.
(16)



FSC decoding with
bit-flipping operations

Bit-flipping policy
πθ

y r∗

a∗γ

Environment Agent

Fig. 3: The training setup of the proposed bit-flipping policy
when formalized as a RL problem.

The most probable bit-flipping index i∗e is then selected as

i∗e = arg min
∀i,0≤i<K+C

Mi. (17)

B. Parameter Optimization

In this section, we formalize the optimization of the matrix
of parameters θ, with θi,j as the element in its i-th row and j-th
column, as an on-policy RL problem. We use policy gradient
techniques to train θ [13, Chapter 13]. Let πθ be a bit-flipping
policy characterized by θ. The input of πθ is γ and the output
of πθ is a probability vector p = {p0, p1, . . . , pK+C−1},
where p = πθ(γ) and pi indicates the probability that i∗e = i.
The value of pi can be obtained from the bit-flipping metric
in (16) as

pi =
exp(−Mi)∑K+C−1

j=0 exp(−Mj)
. (18)

It can be seen from (16) and (18) that the bit index that has
the smallest bit-flipping metric is also the bit index that has
the highest probability to be flipped.

Fig. 3 illustrates the parameter optimization framework used
in this paper in an RL setup, in which the bit-flipping policy
πθ acts as an online learning agent and the FSC decoder with
the proposed bit-flipping operations is categorized as part of
the environment. Given that the first FSC decoding attempt
is not successful, a bit index a∗ (0 ≤ a∗ < K + C) is first
sampled from the categorical distribution of the bit-flipping
policy πθ, where the selection probability of the i-th bit is pi.
In the RL terminology, a∗ is referred to as the action selected
by the agent (with the bit-flipping policy πθ). We denote by
r∗ ∈ {0, 1} a reward value associated with the bit-flipping
index a∗. If the resulting message word satisfies the CRC
verification after the a∗-th bit of γ is flipped in the secondary
FSC decoding attempt, a reward of 1 (r∗ = 1) is given to the
a∗-th output of πθ, otherwise the reward is set to 0 (r∗ = 0).

In practice, a bit-flipping set A that contains Tmax (1 ≤
Tmax ≤ K +C) different bit-flipping indices is considered at
the secondary decoding attempts. The bit-flipping set A is first
constructed to contain the most probable erroneous indices as

A = {a0, a1, . . . , aTmax−1}, (19)

where pa0 ≥ pa1 ≥ . . . ≥ paTmax−1
and a0 =

arg max∀i,0≤i<K+C pi. If the sampled bit index a∗ is not inA,
the bit index aTmax−1 is replaced by a∗. The proposed decoder
then performs consecutive FSC decoding attempts, each time
flipping a different bit index given in A.

Algorithm 1: RL-Aided FSCF Decoding
Input : Tmax, B, λ
Output: û

1 t← 1, r̄ ← 0, ∇tmp ← 0 // Initialization

2 while True do
3 Obtain αn from the channel output y
4 û,γ ← FSC(αn) // Initial FSC Decoding

5 if û fails the CRC test then
/* Action Selection */

6 Obtain M , p, A using (16), (18), and (19)
7 a∗ ∼ πθ, r∗ ← 0
8 if a∗ /∈ A then
9 aTmax−1 ← a∗

/* Proposed FSCF with Bit Flipping */

10 for j ← 0 to Tmax − 1 do
11 ûtmp ← FSCF(αn, aj) // FSCF Decoding

12 if ûtmp passes the CRC test then
13 a∗ ← aj , r∗ ← 1, û← ûtmp
14 break

/* Parameter Optimization */

15 ∇tmp ←∇tmp + ∂ ln pa∗
∂θ (r∗ − r̄)

16 r̄ ← r̄ + r∗−r̄
t // Update baseline reward

17 if (t mod B) == 0 then
18 ∇θ ←∇tmp/B
19 θ ← θ + λ∇θ

20 ∇tmp ← 0

21 t← t+ 1 // Increase the time step

22 Output û

Given a sample of the LLR vector γ, the objective of the
bit-flipping policy πθ is to derive an action a∗ that maximizes
the expected reward value of r∗, which is given as [12]

J(θ) = Ea∗∼πθ
[r∗] ≈ 1

|D|
∑
∀γ∈D

r∗, (20)

where D is a mini-batch of the dataset that contains B different
instances of γ, and B = |D|. The derivative of the objective
function J(θ) with respect to the parameter set θ can be
derived as [12]

∇θ =
∂J(θ)

∂θ
=

1

|D|
∑
∀γ∈D

∂ ln pa∗

∂θ
(r∗ − r̄), (21)

where r̄ ∈ R is a baseline reward [13, Section 13.4]. The
parameters in θ are then updated using a variant of the
stochastic-gradient ascent technique, where the parameters are
updated as

θ := θ + λ∇θ (22)

and λ > 0 is the learning rate.
We provide the details of the proposed decoder with the

optimization of θ in Algorithm 1. In Algorithm 1, t is the
time step, ∇tmp is the matrix of size (K + C) × (K + C)
that stores the gradients of θ, and 0 is an all-zero matrix of



0 200 400 600 800 1,000

0.4

0.5

0.6

0.7

0.8

Time step (×10000)

r̄

Proposed model with RL Proposed model with SL

SCF-based model [5] DSCF-based model [6]

Fig. 4: The cumulative average rewards of various bit-
flipping models when applied to the proposed bit-flipping
algorithm. The simulation is carried out at Eb/N0 = 3 dB
for P(512, 256) with a 24-bit CRC, and Tmax = 1.

size (K +C)× (K +C). In addition, the cumulative average
reward is used as the reward baseline [13, Section 13.4], which
is periodically updated at each time step.

C. Evaluation

In this section, we first provide the training results of the
proposed bit-flipping model in Algorithm 1. Throughout this
section, we use P(512, 256) concatenated to a 24-bit CRC1 as
stated in the 5G standard [2]. We use the bit-flipping models
in [5] and [6] as a benchmark of estimating the first error bit
in γ. Based on [5], [6] the first error bit of γ can be obtained
as follows.
• SCF-based model [5]: i∗e = arg min∀i, 0≤i<K+C |γi|.
• DSCF-based model [6]: i∗e = arg min∀i, 0≤i<K+C Qi,

where

Qi = |γi|+
∑
∀j≤i

1

0.3
ln [1 + exp (−0.3|γj |)].

In addition, we also consider an ideal bit-flipping model which
can identify i∗e correctly given γ and u.

Fig. 4 compares the performance of different bit-flipping
models (policies) in terms of the cumulative average reward,
denoted as r̄, when applied to the proposed bit-flipping algo-
rithm. We also consider the conventional supervised learning
(SL) technique as an optimization scheme for the parameter
set θ and compare it with the proposed RL-based optimization
scheme. 105 training samples are obtained with all-zero code-
words to train the parameter set θ when the SL techniques
are used. In fact, increasing the training samples of the SL
approach does not improve r̄ in our problem setting. For both
the RL-based and SL-based approaches, we set B = 100,
λ = 2× 10−5 and use PyTorch with Adam optimizer [14] as
the training framework2.

It can be observed from Fig. 4 that the cumulative average
reward of the proposed bit-flipping model when trained with
RL or SL techniques outperforms that of the DSCF-based [6]
and SCF-based [5] models. This is because the proposed algo-
rithm utilizes a more powerful predictive model characterized

1In this paper we use the 24-bit CRC specified as 24C.
2The parameters θ are available at https://github.com/nghiadt05/RL-FSCF.

3 3.5 4 4.5

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.5 4 4.5

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.5 4 4.5

10−5

10−4

10−3

10−2

Eb/N0 [dB]
FE

R

Proposed model with RL Proposed model with SL

SCF-based model [5] DSCF-based model [6]

Fig. 5: The error-correction performance of the proposed bit-
flipping algorithm with various bit-flipping models in Fig. 4.

by θ, where |θ| = (K+C)2, while the models used in [5], [6]
only contain up to a single trainable parameter. Moreover, the
RL-based optimization approach provides a slight improve-
ment in the cumulative average reward when compared with
the SL-based approach, as the objective functions of the RL-
based and SL-based approaches are different. The SL-based
approach trains the model to make an ML decision given the
training dataset. On the other hand, the RL-based approach
trains the model to directly maximize the numerical reward r̄.
Fig. 5 shows the FER of the proposed bit-flipping algorithm
with the bit-flipping models shown in Fig. 4 for Tmax = 1. The
experimental results in Fig. 5 show that a direct optimization
of θ to maximize r̄ also results in the best error-correction
performance of the proposed decoder, when compared with
other approaches in Fig. 4. Note that the parameter set θ is
optimized at each SNR value for the SL-based approach and
the FERs are simulated using 107 frames at each SNR value.

It is worth mentioning that by formalizing the optimization
of θ as an RL problem, the training can be carried out at
the decoder side without the need of pilot signals, which is
suitable for a pilot-less communication system. Furthermore,
unlike the SL approach, the training of θ does not require a
large memory to store the training dataset as observed from
Algorithm 1.

Fig. 6 illustrates the FER curves of various fast SCF
decoders with different values of Tmax at Eb/N0 = {3, 4}
dB. With Tmax = 0, all the decoders in Fig. 6 revert to the
FSC decoder [4]. It can be seen from Fig. 6 that at the same
value of Tmax when 1 ≤ Tmax ≤ 8, the proposed decoder
has the best error-correction performance when compared to
the decoders in [7], [8]. At Tmax = 8, the proposed decoder
only experiences a negligible error-correction performance
degradation compared to the ideal bit-flipping algorithm.

Fig. 7 shows the error probabilities of various bit-flipping
algorithms of polar codes when Tmax = 8. The FERs of
the state-of-the-art SCL-L decoding algorithm [15] are also
plotted for comparison, where L ∈ {2, 4} is the list size.
It can be observed that the proposed decoder has a similar
error-correction performance when compared with that of the
DSCF [6] and FDSCF [7] decoders, respectively. At the target
FER of 10−4, the error probability of the proposed decoder is
0.25 dB and 0.2 dB better than that of the FSCF [8] and SCL-



0 1 2 3 4 5 6 7 8

10−2

Eb/N0 = 3 dB

Tmax

FE
R

0 1 2 3 4 5 6 7 8

10−5

10−4

10−3
Eb/N0 = 4 dB

Tmax

FE
R

Proposed (ideal) Proposed FSCF [8] FDSCF [7]

Fig. 6: The FER of various fast SCF decoding algorithms as
a function of Tmax at Eb/N0 = {3, 4} dB.

3 3.5 4 4.5

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.5 4 4.5

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.5 4 4.5

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R Proposed FSCF [8] DSCF [6]

FDSCF [7] SCL-2 [15] SCL-4 [15]

Fig. 7: The error-correction performance of various decoding
algorithms. Tmax is set to 8 for all the bit-flipping algorithms.

2 [15] decoders. At the same target FER, when compared with
SCL-4, the proposed algorithm experiences an error-correction
performance loss of 0.3 dB. In Fig. 8, the decoding latency,
in terms of the average number of decoding attempts (Tavg) of
various fast SCF decoders, is plotted for comparison. For all
the decoders in Fig. 8, Tmax = 8. Note that the average number
of decoding attempts of all the decoders depicted in Fig. 8
approaches 1 at high Eb/N0 values. This indicates that at high
Eb/N0 values, the complexity of the decoders approaches the
complexity of a single FSC decoder. In addition, the decoding
latency of the proposed decoder in terms of Tavg is similar to
that of the FDSCF decoder [7] at all the SNR values.

IV. CONCLUSION

In this paper, we first proposed a novel bit-flipping algo-
rithm for fast successive-cancellation (SC) decoding [4] of
polar codes. We then proposed a parameterized bit-flipping
model, which has a better error-bit prediction accuracy when
compared with the bit-flipping model introduced in [6]. Fur-
thermore, the trainable parameters of the proposed decoder
are optimized using reinforcement learning (RL) techniques,
which are memory-efficient and do not need pilot signals as
required by the supervised learning (SL) approach. Finally,
we showed that for a 5G polar code of length 512 with

3 3.5 4 4.5

1

1.05

1.1

1.15

Eb/N0 [dB]

T
av

g

Proposed FSCF [8] F-DSCF [7]

Fig. 8: The average number of decoding iterations of various
fast SCF algorithms with Tmax = 8.

256 information bits, with the same number of maximum
additional decoding attempts, the proposed decoder has a
better or similar error probability when compared to the state-
of-the-art fast dynamic SC-Flip (FDSCF) decoding algorithm
in [7].

ACKNOWLEDGMENT

S. A. Hashemi is supported by a Postdoctoral Fellowship
from the Natural Sciences and Engineering Research Council
of Canada (NSERC).

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] 3GPP, “Multiplexing and channel coding (Release 10)
3GPP TS 21.101 v10.4.0.” Oct. 2018. [Online]. Available:
http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21 series/21101-a40.zip

[3] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, October 2011.

[4] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, April 2014.

[5] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity
improved successive cancellation decoder for polar codes,” in 48th
Asilomar Conf. on Sig., Sys. and Comp., Nov 2014, pp. 2116–2120.

[6] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding
of polar codes,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2333–2345,
June 2018.

[7] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic
SC-flip polar decoders: Algorithm and implementation,” IEEE Trans.
Signal Process., vol. 68, pp. 5441–5456, 2020.

[8] P. Giard and A. Burg, “Fast-SSC-flip decoding of polar codes,” in 2018
IEEE Wireless Comm. and Net. Conf. Work., 2018, pp. 73–77.

[9] M. H. Ardakani, M. Hanif, M. Ardakani, and C. Tellambura, “Fast
successive-cancellation-based decoders of polar codes,” IEEE Trans.
Commun., vol. 67, no. 7, pp. 4562–4574, 2019.

[10] F. Ercan, T. Tonnellier, and W. J. Gross, “Energy-efficient hardware
architectures for fast polar decoders,” IEEE Trans. Circuits Syst. I,
vol. 67, no. 1, pp. 322–335, 2020.

[11] S. A. Hashemi, N. Doan, T. Tonnellier, and W. J. Gross, “Deep-learning-
aided successive-cancellation decoding of polar codes,” in 53rd Asilomar
Conf. on Sig., Sys., and Comp., 2019, pp. 532–536.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[15] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, Oct. 2015.


