Fast SC-Flip Decoding of Polar Codes with Reinforcement Learning

Nghia Doan1, Seyyed Ali Hashemi2, Furkan Ercan3, and Warren Gross1

1McGill University, Québec, Canada
2Stanford University, California, USA
3Octasic Inc, Québec, Canada

IEEE International Conference on Communications
Montréal, Québec, Canada
June 15, 2021
Preliminaries & Problem Statements
Background

- Polar codes: selected for the eMBB control channel in 5G
- Cyclic redundancy check (CRC) is concatenated with polar codes in 5G for error detection
- CRC-polar concatenated codes are decoded using Successive-Cancellation (SC) based decoding algorithms
Polar codes

- Introduced by Arıkan in 2009 [Arıkan’09]
- $\mathcal{P}(N, K)$, N: code length, K: message length
- \mathcal{A}: information-bit set, $|\mathcal{A}| = K$, contains the reliable channels
- \mathcal{A}^c: frozen-bit set, $|\mathcal{A}^c| = N - K$, contains the noisy channels

SC and Fast-SC Decoding

- SC decoding traverses all the nodes under the binary-tree representation of the code, rendering a high decoding latency.
- Fast-SC decoding performs the decoding at the parent-node level of some special nodes → reduce the decoding latency [Sarkis’14]

SC-Flip (SCF) Decoding

- Given that the first SC decoding is not successful
- Estimation of the first error bit: $i_e^* = \arg \min_{\forall i \in A} |\alpha_{0,i}|$
- E.g., $i_e^* = 6$, thus \hat{u}_6 is flipped from 1 to 0 in the second SC decoding attempt

Dynamic SC-Flip (DSCF) Decoding

- Estimation of the first error bit: \(i^*_e = \arg\min_{i \in A} Q_i \), where

\[
Q_i = |\alpha_{0,i}| + \sum_{\forall j \in A, j \leq i} \frac{1}{\delta} \ln [1 + \exp (-\delta |\alpha_{0,j}|)],
\]

and \(\delta = 0.3 \) is a perturbation parameter.

- E.g., \(i^*_e = 5 \), thus \(\hat{u}_1 \) is flipped in the second SC decoding attempt

<table>
<thead>
<tr>
<th>(i \in A)</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>\alpha_{0,i}</td>
<td>)</td>
<td>1.1</td>
<td>0.7</td>
<td>1.9</td>
<td>2.4</td>
<td>3.8</td>
<td>2.2</td>
</tr>
<tr>
<td>(Q_i)</td>
<td>2.9</td>
<td>4.5</td>
<td>7.2</td>
<td>9.0</td>
<td>11.3</td>
<td>11.1</td>
<td>12.1</td>
<td>16.3</td>
</tr>
</tbody>
</table>

- DSCF requires costly computations and the decoding is performed at the leaf-node level, which results in a high decoding latency.

Contributions

- Propose a novel bit-flipping algorithm tailored to Fast-SC decoding.
- Use a parameterized model, which is optimized using reinforcement learning (RL).
- Has a similar or better error-bit prediction accuracy when compared with the state-of-the-art SCF-based algorithms.
The Proposed Algorithm
Construction of the LLR vector γ

- γ: a vector of LLR values of the visited nodes under Fast-SC decoding.
Construction of the LLR vector γ

- γ: a vector of LLR values of the visited nodes under Fast-SC decoding.
- ν: SPC node
Construction of the LLR vector γ

- γ: a vector of LLR values of the visited nodes under Fast-SC decoding.
- ν: SPC node

- Parity check condition:
 \[0 = \bigoplus_{i = i_{\min \nu}}^{i_{\max \nu}} \beta_{s,i} \rightarrow \beta_{s,i_{\min \nu}} = \bigoplus_{i = i_{\min \nu} + 1}^{i_{\max \nu}} \beta_{s,i} \rightarrow \text{only flip } \beta_{s,i} \]
 where $i_{\min \nu} < i \leq i_{\max \nu}$
Construction of the LLR vector γ

- γ: a vector of LLR values of the visited nodes under Fast-SC decoding.

- ν: SPC node
 - Parity check condition:
 \[0 = \bigoplus_{i = i_{\min}}^{i_{\max}} \beta_s, i \rightarrow \beta_s, i_{\min} = \bigoplus_{i = i_{\min} + 1}^{i_{\max}} \beta_s, i \rightarrow \text{only flip } \beta_s, i \]
 where $i_{\min} < i \leq i_{\max}$
 - Update $\gamma \leftarrow \gamma \cup \alpha_{s, i}$ for all $i_{\min} < i \leq i_{\max}$
Construction of the LLR vector γ

- γ: a vector of LLR values of the visited nodes under Fast-SC decoding.
- ν: SPC node
 - Parity check condition:
 \[
 0 = \bigoplus_{i=i_{\min}}^{i_{\max}} \beta_{s, i} \rightarrow \beta_{s, i_{\min}} = \bigoplus_{i=i_{\min}+1}^{i_{\max}} \beta_{s, i} \rightarrow \text{only flip } \beta_{s, i}
 \]
 where $i_{\min} < i \leq i_{\max}$
 - Update $\gamma \leftarrow \gamma \cup \alpha_{s, i}$ for all $i_{\min} < i \leq i_{\max}$

\[
\gamma = \{\alpha_{2,5}, \alpha_{2,6}, \alpha_{2,7}\}
\]
Construction of the LLR vector γ

- ν: REP node
 - Update $\gamma \leftarrow \gamma \cup \alpha_{0,i_{\text{max}}}, \text{ where } \alpha_{0,i_{\text{max}}} = \sum_{i=i_{\text{min}}}^{i_{\text{max}}} \alpha_{s,i}$

\[\gamma = \{ \alpha_{2,5}, \alpha_{2,6}, \alpha_{2,7}, \alpha_{0,11} = \sum_{i=8}^{11} \alpha_{2,i} \} \]
Construction of the LLR vector γ

- ν: Rate-1 node
 - Update $\gamma \leftarrow \gamma \cup \alpha_i$ for all $i_{\min,\nu} \leq i \leq i_{\max,\nu}$

- If the i-th bit of γ is an error bit \rightarrow flip the hard decision corresponding to the i-th bit of γ
The error bit is estimated by learning the correlation of the elements of γ.

Let θ be a $(K + C) \times (K + C)$ correlation matrix where $\theta_{i,i} = 1$ and $\theta_{i,j} = \theta_{j,i}$ for $0 \leq i, j < K + C$.

The bit-error metric M_i of the i-th element of γ:

$$M_i = \sum_{0 \leq j < K + C} \theta_{i,j} |\gamma_j|.$$

The most probable error index: $i^* = \arg \min_{0 \leq i < K + C} M_i$.

Estimation of The Error Position
The error bit is estimated by learning the correlation of the elements of γ.

Let θ be a $(K + C) \times (K + C)$ correlation matrix where $\theta_{i,i} = 1$ and $\theta_{i,j} = \theta_{j,i}$ for $0 \leq i, j < K + C$.
The error bit is estimated by learning the correlation of the elements of γ.

Let θ be a $(K + C) \times (K + C)$ correlation matrix where $\theta_{i,i} = 1$ and $\theta_{i,j} = \theta_{j,i}$ for $0 \leq i, j < K + C$.

The bit-error metric M_i of the i-th element of γ:

$$M_i = \sum_{0 \leq j < K+C} \theta_{i,j} |\gamma_j|. \quad (1)$$
Estimation of The Error Position

- The error bit is estimated by learning the correlation of the elements of γ.
- Let θ be a $(K + C) \times (K + C)$ correlation matrix where $\theta_{i,i} = 1$ and $\theta_{i,j} = \theta_{j,i}$ for $0 \leq i, j < K + C$.
- The bit-error metric M_i of the i-th element of γ:
 \[
 M_i = \sum_{0 \leq j < K+C} \theta_{i,j} |\gamma_j|.
 \] (1)
- The most probable error index: $i_e^* = \arg \min_{0 \leq i < K+C} M_i$.
Optimization of θ using a RL setup

FSC decoding with bit-flipping operations
\[y \rightarrow \text{FSC decoding with bit-flipping operations} \rightarrow r^* \rightarrow \text{Bit-flipping policy π_{θ}} \]

Environment
Agent

- If flipping the bit associated with the a^*-th element of γ results in a CRC pass $\rightarrow r^* = 1$, otherwise $r^* = 0$.

- Update θ using the gradient ascent technique

\[
\theta \leftarrow \theta + \frac{\ln p_{a^*}}{\text{d} \theta} (r^* - \bar{r}), \quad (2)
\]

where \bar{r} is the cumulative average reward.
Performance Evaluation

\[P(512, 256), \ C = 24, \ # \ of \ flipping \ attemp \ T_{\text{max}} = 1 \]

Performance Evaluation

The FERs of various fast SCF decoding algorithms as a function of T_{max}.

$E_b/N_0 = 3 \, \text{dB}$

$E_b/N_0 = 4 \, \text{dB}$

Average number of decoding attempts T_{avg} of various fast SCF decoding algorithms with $T_{\text{max}} = 8$.

Conclusion

- Proposed a novel bit-flipping algorithm for Fast-SC decoding
- Better error-bit estimation accuracy compared to that of state-of-the-art Fast-SCF decoding algorithms, given a small number of flipping-attempts.
- Using RL technique to optimize the parameters, which can be carried out at the decoder side and does not require pilot signals.
Thank You!