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Abstract—Neural network (NN) based decoders have appeared
as potential candidates to replace successive cancellation (SC)
based and belief propagation (BP) decoders for polar codes,
due to their one-shot-decoding property. Partitioned NN (PNN)
decoder has provided a solution to make use of multiple
NN decoders which are connected with BP decoding, with
the presence of insufficient training data for practical-length
polar codes. However, PNN decoder requires BP iterations that
detrimentally affect the decoding latency as compared to non-
iterative approaches. In this paper, we propose a neural SC
(NSC) decoder to overcome the issue associated with PNN. Unlike
PNN, the NSC decoder is constructed by multiple NN decoders
connected with SC decoding. Compared to a PNN decoder for
a polar code of length 128 and rate 0.5, the proposed NSC
decoder achieves the same decoding performance, while reducing
the decoding latency by 42.5%.

Index Terms—polar codes, successive-cancellation decoding,
list decoding, belief propagation decoder, deep-learning-based
decoders.

I. INTRODUCTION

Polar codes, proposed by Arıkan in [1], are a recent

breakthrough in coding theory owing to the fact that

they represent a class of error-correcting codes that is

mathematically proven to achieve channel capacity with low

complexity encoding and decoding algorithms. Successive

cancellation (SC) and belief propagation (BP) decoding

algorithms are two methods used to decode polar codes. SC

decoding has low computational complexity, but its serial

nature limits the throughput of decoding. In addition, polar

codes only achieve channel capacity under SC decoding when

the code length is very high. For short to moderate code

lengths, SC decoding fails to provide a reasonable error

correction performance. SC list (SCL) decoding [2] improves

the error correction performance of SC decoding at the cost

of higher computational complexity and lower throughput.

Several attempts have been made to reduce the computational

complexity and increase the throughput of polar code SCL

decoders [3]–[5].

Although the iterative message-passing characteristic of BP

decoding enables parallel decoding, this algorithm requires

high computational complexity and is not able to achieve

desirable error correction performance within a small number

of iterations [6]. Recently, deep learning (DL) algorithms and

specifically neural networks (NNs), have been considered as a

potential solution to either replace or help the state-of-the-art

decoders for polar codes [7]–[14] because of their powerful

prediction models and one-shot-decoding property [14]. The

latter characteristic is especially useful since polar codes are

selected as a channel coding scheme for the next generation

of wireless communications standard (5G) [15] where the

communication speed is of utmost importance.

It has been shown in [7] that the unfolded Tanner graph

of the BP algorithm naturally becomes a partially connected

NN, which enables the use of DL techniques on top of the

BP decoding algorithm. Thus, a great deal of research mainly

focuses on designing DL algorithms for BP decoding. It was

further shown in [7] that learn-able weights can be assigned

to the unfolded Tanner graph of BP decoder of high-density

parity-check (HDPC) codes to enable not only error correction

performance improvement, but also latency reduction over the

original BP decoder. In [8], [9], performance degradation due

to the min-sum approximation was recovered by assigning

learn-able multiplicative or additive parameters in BP decoding

of short Bose-Chaudhuri-Hocquenghem (BCH) codes. A

similar technique is applied in [10] for the case of polar

codes. However, all the aforementioned algorithms use DL as

a refinement technique as the decoding process is still carried

out by BP decoding.

An alternative approach is to directly train a NN model to

decode a codeword. It has been observed in [11], [12] that

due to the exponential complexity of the learning space [13],

NN-based decoders can only achieve MAP performance for

short code lengths. For long code lengths, one solution is to

make use of partitioned NN (PNN) decoders as presented in

[14]. However, BP decoding often requires a high number of

iterations to obtain equivalent decoding performance as that

of SC decoding [6]. Therefore, the PNN decoder requires

high number of BP iterations to achieve a reasonable error

correction performance which in turn reduces the speed of

decoding.

In this paper, we propose an NN-based neural SC (NSC)

decoder that consists of multiple constituent NN decoders

which are connected together using SC decoding. We train

the NN decoders with the internal log-likelihood ratio (LLR)

values given by SC decoding and show that the proposed

approach introduces no latency overhead which are inherently

caused by BP iterations. We further show that with the SC

coupling stage, the proposed NSC decoder has significantly

smaller decoding latency while maintaining the same error

correction performance in comparison with the PNN decoder

of [14].

The remainder of this paper is organized as follows.
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Fig. 1: SC decoding on a binary tree for P(8, 5) and

{u0, u1, u2} ∈ F .

Section II briefly introduces polar codes and the SC and NN

decoding algorithms. In Section III, the proposed NSC decoder

is introduced and the experimental results are provided in

Section IV. Finally, Section V draws the main conclusions

of the paper.

II. PRELIMINARIES

A. Polar Codes

A polar code P(N,K) of length N with K information

bits is constructed by applying a liner transformation to the

message word u = {u0, u1, . . . , uN−1} as x = uG⊗n where

x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is the n-

th Kronecker product of the polarizing matrix G =
[
1 0
1 1

]
,

and n = log2 N . The vector u contains a set A of K
information bits and a set F of N − K frozen bits. The

positions and the value of the frozen bits are known to the

encoder and the decoder. The codeword x is then modulated

and sent through the channel. In this paper, binary phase-shift

keying (BPSK) modulation and additive white Gaussian noise

(AWGN) channel model are considered.

B. Successive-Cancellation Decoding

Fig. 1 illustrates the binary tree representation of a polar

code P(8, 5) and its corresponding SC decoding. For a node

of length Nν , the soft LLR values α = {α0, α1, . . . , αNν−1}
traverse from parent to child nodes, while the estimated hard

values β = {β0, β1, . . . , βNν−1} pass through the reverse

direction. The LLR vectors αl = {αl
0, α

l
1, . . . , α

l
Nν
2 −1

} and

αr = {αr
0, α

r
1, . . . , α

r
Nν
2 −1

} of the left and right-child nodes

can be computed as

αl
i =2arctanh

(
tanh

(αi

2

)
tanh

(αi+Nν
2

2

))
, (1)

αr
i =αi+Nν

2
+ (1− 2βl

i)αi, (2)

whereas the estimated hard values β of the parent node are

updated from those of the left and right-child nodes βl =
{βl

0, β
l
1, . . . , β

l
Nν
2 −1

} and βr = {βr
0, β

r
1, . . . , β

r
Nν
2 −1

} as

βi =

{
βl
i ⊕ βr

i, if i < Nν

2 ,

βr

i−Nν
2

, otherwise,
(3)

where ⊕ is the bitwise XOR operation. At the leaf level, the

i-th estimated message bit ûi can be obtained as

ûi =

{
0, if i ∈ F or αi ≥ 0,

1, otherwise.
(4)

Furthermore, (1) can be approximated using the hardware-

friendly version proposed in [16]:

αl
i = sgn(αi) sgn(αi+Nν

2
)min(|αi|, |αi+Nν

2
|). (5)

It was shown in [1] that the latency of SC decoding

algorithm can be represented in terms of the number of time

steps as

TSC = 2N − 2. (6)

C. Neural Network Decoding

A fully connected NN [17] decoder contains T hidden

layers with the size of {L1, L2, . . . , LT }, where Lt > 0
and 1 ≤ t ≤ T . The size of the input and output

layers is equal to the number of input LLR values or the

number of output bits, denoted as Nν . The full network

structure can then be expressed as {L0, L1, . . . , LT , LT+1} =
{Nν , L1, . . . , LT , Nν}, where L0 and LT+1 denote the size

of the input and output layers, respectively. Each layer t for

1 ≤ t ≤ T +1 has an associated Lt−1×Lt weight matrix wt

and a 1 × Lt bias vector bt. The output vector of layer t is

denoted by ot and is computed as

ot = ft(ot−1) = φt(ot−1wt + bt), (7)

where o0 = α and φt is a non-linear activation function such

that

φt(y) =

{
max(0,y), if 1 ≤ t ≤ T ,

1
1+e−y , if t = T + 1.

(8)

Note that the sigmoid function 1
1+e−y [17] constrains the

outputs of the last layer within the range of (0, 1), which are

also understood as the probability of the output bits to be 1. Let

us consider û = {û0, û1, . . . , ûNν−1} represents the output

bits and P = {P0, P1, . . . , PNν−1
} represents the vector of

probabilities such that for 0 ≤ i < Nν − 1, Pi = Pr(ûi = 1).
The NN decoder with the given layer configuration can be

written as

P = fNN(α) = fT+1(fT (. . . (f1(α)))), (9)

where α = {α0, α1, . . . , αNν−1} is the vector of the input

LLR values. Once the probability of each output bit is

obtained, the decoded bits are estimated as

ûi =

{
0, if i ∈ F or Pi ≤ 0.5,

1, otherwise.
(10)
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Fig. 2: NSC decoding with NN decoders applied at stage 1 of

P(8, 5) with {u0, u1, u2} ∈ F .

The weight matrix wt and the bias vector bt are trained

using backpropagation, and the loss function can either be the

mean-squared-error (MSE) or the binary-cross-entropy (BCE)

functions [17] as

LMSE =
1

M

M−1∑
j=0

Nν−1∑
i=0

(u
(j)
i − P

(j)
i )2, (11)

LBCE =− 1

M

M−1∑
j=0

Nν−1∑
i=0

[
(1− u

(j)
i ) ln (1− P

(j)
i )

+ u
(j)
i lnP

(j)
i

]
, (12)

where u
(j)
i and P

(j)
i are the bit value and the output probability

of the i-th bit in the j-th message word of the mini batch,

respectively. Each message word contains Nν bits, while the

mini batch has a size of M .

The number of time steps required to finish the decoding

process in the NN decoder is dependent on the number of

hidden layers and can be calculated as TNN = T + 1. In

[14], a PNN decoder was introduced based on the partitioning

technique of [5] to reduce the complexity of the learning space.

For a PNN decoder with partitions of length 2s (0 ≤ s ≤ n),

the number of required decoding time steps is

TPNN =
N

2s
(T + 1) + 2

N

2s
log2

N

2s
. (13)

III. NEURAL SUCCESSIVE CANCELLATION DECODING

The structure of the proposed NSC decoder is determined

by first selecting a stage s in the SC decoding tree and

replacing each constituent SC decoder of length 2s by an

NN decoder. Fig. 2 illustrates the proposed NSC decoder

where the replacement is carried out at stage 1, thus each

NN decoder receives two internal LLR values and predicts

two output bits. Unlike other fast SC decoders that need to be

Algorithm 1: Collect training data for NN decoders

Input : u,α
Output: uk={uk2s ,uk2s+1,. . . ,u(k+1)2s−1},

αs
k={αs

k2s ,αs
k2s+1,. . . ,αs

(k+1)2s−1}
/* Hard values calculation */

1 β0 = u;
2 for i← 1 to n− 1 do
3 Calculate βi from βi−1;
4 end
/* Internal LLR values calculation */

5 αn = α;
6 for i← n− 1 to s do
7 Calculate αi from (αi+1,βi);
8 end
/* Store the training data for each NN

decoder */

9 for k ← 0 to N/2s − 1 do
10 Store uk and αs

k for the k-th NN decoder;

11 end

manually designed to decode special constituent codes [18],

the NN decoder in this paper is trained to decode any node

without considering any specific patterns formed by frozen bit

and information bit locations.

The process of collecting training data for each NN

decoder is summarized in Algorithm 1. The message word

and the channel LLR values are denoted as u and α,

respectively. Let i and k denote the stage index and the

NN decoder index, respectively, where 0 ≤ i ≤ n − 1
and 0 ≤ k ≤ N/2s − 1. It should be noted that each

NN is of size 2s. The vector of internal LLR and hard

values at stage i are denoted as αi = {αi
0, α

i
1, . . . , α

i
N−1}

and βi = {βi
0, β

i
1, . . . , β

i
N−1}, respectively. The training

data of each NN decoder is obtained by assuming that the

SC decoder has perfect knowledge of the transmitted bits.

Thus, the hard values of all stages are calculated using the

message word and the internal LLR values from stage n to

stage s are calculated given that all the previous bits are

decoded correctly. Finally, the internal LLR values at stage s,

αs
k = {αs

k2s , α
s
k2s+1, . . . , α

s
(k+1)2s−1}, and the corresponding

message word, uk = {uk2s , uk2s+1, . . . , u(k+1)2s−1}, of the

k-th NN decoder is stored.

After the training phase, each constituent NN decoder

obtains its weight and bias matrices and is ready for decoding.

The decoding process of the proposed NSC decoding

algorithm is summarized in Algorithm 2. The NSC decoding

algorithm makes use of SC decoding to generate internal LLR

values for each NN decoder. At stage s, the k-th NN decoder

infers the input LLR values αs
k using its trained weights and

biases. The output bits of this NN decoder, denoted as ûk, are

then estimated in accordance with (10). Then, β̂s
k at stage s,

given by this NN decoder, is updated. The decoding process

is continued until the last NN decoder outputs its estimation.

Let us consider the k-th NN decoder at stage s. The output
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Algorithm 2: NSC Decoding

Input : α
Output: û
/* Successively apply NN decoding for

each constituent code */

1 for k ← 0 to N/2s − 1 do
2 Calculate αs

k using SC decoding;

3 Estimate ûk from αs
k using NN decoding;

4 Update β̂s
k from ûk;

5 end
6 return û

estimation of this NN decoder in accordance with (9) is:

P = fNN(α
s
k)

= fNN(fSC(α, û0, û1, . . . , ûk−1)).
(14)

The function fSC implies SC decoding with the use of (2)-

(5), given the channel LLR values, α, and the hard values,

which are calculated from the output bit vectors ûm of all NN

decoders with 0 ≤ m ≤ k − 1. It can be observed from (14)

that the SC decoding used in the proposed decoder (similar

to the BP decoding in [14]) acts like a feature extractor that

maps the feature space α ∈ R
N to a lower-dimensional feature

space αs
k ∈ R

2s .

It is worth mentioning that for sufficient training, each

partitioned NN decoder needs to be trained from the dataset

(uk,α
s
k) that is generated from the channel LLR values with

all the possible values of information bits. Therefore, the size

of the training data for each constituent NN decoder has a

space complexity of Θ(2K) due to the fact that

α = 1− 2uG⊗n + z, (15)

where z is the AWGN channel noise, 1 is the all-one vector

of length N , and u contains K information bits. However,

the SC coupling stage simplifies the learning problem of the

individual NN decoders by reducing the feature size.

The decoding latency in terms of the number of time steps

for the proposed NSC decoder can be calculated as

TNSC =
N

2s
(T + 1) + 2

N

2s
− 2, (16)

which is always smaller than the latency of the PNN decoder

as given in (13), if the two decoders have the same number

of NN decoders and s < n. This is illustrated in Fig. 3 for

PNN and NSC decoding of a polar code of length N = 128,

when T = 3, and for different values of the stage index s.

It can be seen that as the number of partitions increases, the

saving in the number of time steps achieved by NSC is more

significant.

IV. EXPERIMENTAL RESULTS

In this section, we examine the error correction performance

of the proposed NSC decoder in terms of bit error rate

(BER) and frame error rate (FER). To this end, the NSC

decoder is applied to P(128, 64), which is constructed for

0 1 2 3 4 5 6

0

1,000

2,000

s

T
im

e
st

ep
s

TPNN

TNSC

Fig. 3: Decoding latency comparison between NSC and PNN

decoders with N = 128, T = 3, and different values of s.

SNR = 5 dB based on [19]. In order to select the value

of s at which the NN decoders are present, we first fix the

polar code and the constituent NN decoder structure. We then

progressively increase the value of s from 0 to log2 N and

apply the proposed algorithm for each value of s. We pick

the largest value of s with which the decoding performance

of the proposed algorithm is preserved in comparison with

the original SC decoding. We use (12) as the loss function

and use stochastic gradient descent to minimize the loss.

The training phase is implemented using Keras [20] with

TensorFlow back-end [21]. Adam [22] and early-stopping

techniques [23] are used as the methods of optimization and

regularization, respectively.

In order to obtain the training and validation data, 5000000
random codewords are generated first. Then a random

segmentation containing 80% of the generated codewords is

used as the training set, and the remaining 20% is used as

the validation set. Note that the above data ratio is a practical

parameter suggested by [20]. In addition, in order to have a

fair comparison, the testing process of the proposed decoder

is consistent with other considered decoders, in which at least

10000 codewords are tested and at least 50 frames in error

are captured. It should be noted that the batch size in use is

10000 and the maximum number of training epochs is 2000.

The error correction performance of the proposed NSC

decoder is compared with the PNN decoder of [14], and

the SC and BP decoders, as shown in Fig. 4. For a fair

comparison, the PNN decoder is designed to have the same

number of partitions as that of the NSC, i.e. 8 partitions.

Furthermore, each constituent NN decoder of the NSC and the

PNN decoders has the same network configuration with T = 3
and {L0, L1, L2, L3, L4} = {16, 512, 256, 128, 16}. For the

BP decoder, 30 iterations are used to provide the same error

correction performance as the SC decoder. It should be noted

that the time steps required by BP decoding with I iterations

can be calculated as

TBP = 2I log2 N . (17)

It can be seen in Fig. 4 that the NSC decoder has similar error

correction performance in comparison with PNN, SC, and BP

decoders.
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Fig. 4: BER and FER performance comparison of NSC

decoding of P(128, 64), with the PNN decoder of [14], and

SC and BP decoders. The NSC and the PNN decoders are

implemented with 8 constituent NN decoders and 30 iterations

are used in the BP decoder.

TABLE I: Time-step requirements of decoding P(128, 64)
with the proposed NSC decoder in comparison with the PNN

decoder of [14], and the SC and BP decoders. The NSC and

the PNN decoders are implemented with 8 constituent NN

decoders and 30 iterations are used in the BP decoder.

Decoder SC BP PNN NSC

Latency [Time steps] 254 420 80 46

Table I summarizes the decoding latency in time steps of the

proposed NSC decoder for decoding P(128, 64) and compares

it with the latency of PNN, SC, and BP decoders with the same

parameters as the decoders in Fig. 4. It can be observed that

at the same error correction performance, the NSC decoder

requires only 57.5% of the number of time steps required

for the PNN decoder. Moreover, the proposed NSC decoder

reduces the time step requirements of SC and BP decoders by

81.9% and 89.0%, respectively.

V. CONCLUSION

In this paper we proposed a neural successive cancellation

(NSC) decoder for polar codes based on the partitioning

technique of [5]. Unlike the partitioned neural network (PNN)

decoder introduced in [14], the constituent neural network

(NN) decoders in the proposed NSC decoder are connected

together using successive cancellation (SC) decoding. We

demonstrated that at the same error correction performance,

the decoding latency of the proposed NSC decoder in terms

of the number of time steps is up to 89% smaller than that of

SC, belief propagation, and PNN decoders. Our future work

will investigate the decoding capability of the more powerful

NN models, such as recurrent NN (RNN), when applied to the

proposed NSC decoder.
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