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Abstract

I Polar Codes

I Capacity-achieving for codes of infinite length

I Low-complexity encoding and decoding

I Selected for 5G eMBB control channel

I Partitioned Neural-network Decoding [1]

I Applicable for short polar codes

I Suitable for latency-critical applications

I Problem: high decoding latency caused by Belief Propagation (BP) coupling stage

I Solution: use Successive-cancellation (SC) decoding instead of BP decoding

Polar Codes

I P(N,K): polar code of length N and rate K

N

I K best reliable bits to transmit information bits

I Successive-cancellation (SC) Decoding:

I Mediocre error-correction performance for short codes

I Latency: TSC = 2N − 2 (time steps)

I Belief Propagation (BP) Decoding:

I Reasonable error-correction performance with enough iterations

I Latency: TBP = 2I log2N (time steps)

Partitioned Neural Network (PNN) Decoding [1]

I Multiple NN-based decoders are connected using BP decoding

I Has the same decoding performance as SC decoding

I Latency: TPNN = N
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where s: the partition stage, 0 ≤ s ≤ log2N

Neural Successive Cancellation (NSC) Decoding

I Training

I The internal LLRs at stage s are calculated using SC decoding, given the channel LLRs y and
the correct message word u

I Each NN-based decoder is trained with its corresponding partitioned internal LLRs and correct
message bits

I Each NN-based decoder obtains a set of trained weight and bias values

I Decoding

I The decoding scheduling is similar to that of Partitioned Successive Cancellation List (PSCL)
Decoder [2], where each SCL decoder is replaced by a NN-based decoder

I SC decoding is used to supply soft information for all NN-based decoders

I The decoding is finished when the last NN-based decoder outputs its estimation

I Latency: TNSC = N
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(a) SC decoding of P(8, 5) (b) NSC decoding of P(8, 5)

Configurations

I Examined polar code:
I P(128, 64) constructed for SNR = 5dB
I AWGN channel, BPSK modulation

I NSC decoder
I Partition stage: s = 4
I NN-based decoder network size: {16, 512, 256, 128, 16}

I Training for constituent NN-based decoders
I Framework: Keras [3] with TensorFlow [4] back-end
I Optimization and regularization: Adam [5] and early stopping [6]
I Training set: 4× 106 random codewords
I Validation set: 106 random codewords

I Evaluation setup:
I Comparison: SC, BP, PNN and NSC decoders for the examined polar code
I Termination condition: at least 105 frames and at least 50 error frames

Experimental Results

I PNN and NSC decoding latency with P(128, 64) and various values of s
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I Decoding performance comparison for P(128, 64) and s = 4
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I Decoding latency comparison for P(128, 64) and s = 4

Decoder SC BP PNN NSC

Latency [Time steps] 254 420 80 46

Conclusion

I We proposed a NSC decoder which uses constituent NN-based decoders and
SC decoding

I The proposed decoder has the same decoding performance when compared to
PNN, SC, and BP decoders

I The decoding latency of the NSC decoder is 42.5%, 81.9%, and 89%
smaller than that of PNN, SC, and BP decoders, respectively.
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