
Neural Dynamic Successive Cancellation
Flip Decoding of Polar Codes

Nghia Doan∗, Seyyed Ali Hashemi†, Furkan Ercan∗, Thibaud Tonnellier∗, Warren J. Gross∗
∗Department of Electrical and Computer Engineering, McGill University, Canada

†Department of Electrical Engineering, Stanford University, USA
∗{nghia.doan, furkan.ercan}@mail.mcgill.ca, {thibaud.tonnellier, warren.gross}@mcgill.ca

†ahashemi@stanford.edu

Abstract—Dynamic successive cancellation flip (DSCF) decod-
ing of polar codes is a powerful algorithm that can achieve the
error correction performance of successive cancellation list (SCL)
decoding, with a complexity that is close to that of successive
cancellation (SC) decoding at practical signal-to-noise ratio (SNR)
regimes. However, DSCF decoding requires costly transcendental
computations which adversely affect its implementation com-
plexity. In this paper, we first show that a direct application
of common approximation schemes on the conventional DSCF
decoding results in significant error-correction performance loss.
We then introduce a training parameter and propose an approx-
imation scheme which completely removes the need to perform
transcendental computations in DSCF decoding, with almost no
error-correction performance degradation.

Index Terms—5G, polar codes, deep learning, SC Flip.

I. INTRODUCTION

Polar codes are proven to achieve channel capacity for
any binary symmetric channel under the low-complexity suc-
cessive cancellation (SC) decoding as the code length tends
towards infinity [1]. Recently, polar codes are selected for use
in the enhanced mobile broadband (eMBB) control channel
of the fifth generation of cellular mobile communications (5G
standard) which requires codes of short length [2]. The error-
correction performance of SC decoding for short polar codes
does not satisfy the requirements of the 5G standard. A SC list
(SCL) decoding was introduced in [3] to improve the error-
correction performance of SC decoding for short to moderate
polar codes by keeping a list of candidate codewords at each
decoding step. In addition, it was observed that under SCL
decoding, the error probabilities are significantly enhanced
when the polar code is concatenated with a cyclic redundancy
check (CRC) [3]. However, the implementation complexity of
SCL decoding grows as the list size increases.

SC flip (SCF) decoding algorithm was introduced in [4]
which unlike SCL decoding, performs multiple SC decoding
attempts in series, where each decoding attempt tries to flip the
first-order erroneous information bit of the previous decoding
attempt. Similar to SCL decoding, SCF decoding relies on a
CRC to indicate whether the decoding is successful or not.
Several methods have been recently proposed to improve the
error-correction performance of SCF [5]–[7], however they are
limited with correcting a single erroneous bit in the codeword.
Dynamic SCF (DSCF) decoding [8] is a generalization of
SCF-based decoding which is able to correct higher-order

erroneous information bits, i.e., DSCF decoding can correct an
erroneous bit which is a result of error propagation under SC
decoding, given that all previous erroneous bits were correctly
flipped [8].

The advantage of DSCF decoding is that the average de-
coding complexity of it at high signal-to-noise ratio (SNR)
regimes asymptotically approaches the decoding complexity
of SC decoding, while maintaining an error-correction per-
formance [8] comparable to that of SCL decoding. However,
DSCF requires costly exponential and logarithmic computa-
tions which prevent the algorithm to be attractive for practical
applications.

In this paper, we first show that a direct application of the
common approach to approximate the underlying exponential
and logarithmic function in the DSCF decoding algorithm re-
sults in a significant error-correction performance degradation.
We then introduce a new trainable perturbation parameter to
the DSCF decoding algorithm and show that the resulting
decoder can have an error-correction performance close to
that of the ideal DSCF decoder. Furthermore, we show that
the proposed decoder does not suffer from significant error-
correction performance loss if the common hardware-friendly
approximation techniques are used. In addition, a novel deep
learning framework which utilizes the symmetric properties
of DSCF decoding is introduced as an optimization scheme
for the trainable parameter. We name the proposed decoding
algorithm neural DSCF (NDSCF) decoding algorithm. Sim-
ulation results show that for a 5G polar code of length 256,
with 128 information bits and concatenated with a 24-bit CRC,
the proposed NDSCF decoding does not incur significant
error correction performance loss in comparison with the ideal
DSCF decoding, while requiring no exponential or logarithmic
computations.

The rest of this paper is organized as follows. Section II
briefly reviews polar codes and DSCF decoding. Section III
describes the proposed NDSCF decoder. Section IV provides
numerical results, and finally, Section V presents concluding
remarks.

II. PRELIMINARIES

A. Polar Codes

A polar code P(N,K) of length N with K information
bits is constructed by applying a linear transformation to the

272

2019 IEEE International Workshop on Signal Processing Systems

978-1-7281-1927-4/19/$31.00 ©2019 IEEE

(a)

(b)

Fig. 1: (a) SC decoding on the factor graph of P(8, 5) with
{u0, u1, u2} ∈ Ac, (b) a PE.

message word u = {u0, u1, . . . , uN−1} as x = uG⊗n, where
x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is the n-
th Kronecker power of the polarizing matrix G =

[
1 0
1 1

]
,

and n = log2 N . The vector u contains a set A of K
information bits and a set Ac of N − K frozen bits. The
positions of the frozen bits are known to the encoder and the
decoder and their values are usually set to 0. The codeword
x is then sent through the channel using binary phase-shift
keying (BPSK) modulation. The soft vector of the transmitted
codeword received by the decoder is y = (1−2x)+z, where
1 is an all-one vector of size N , and z ∈ R

N is the additive
white Gaussian noise (AWGN) vector with variance σ2 and
zero mean. In the log-likelihood ratio (LLR) domain, the LLR
vector of the transmitted codeword is Ln = 2y

σ2 .

B. Successive Cancellation Decoding

SC decoding can be illustrated on a polar code factor graph
representation. An example of a factor graph for P(8, 5) is
depicted in Fig. 1a. To obtain the message word, the soft LLR
values and the hard bit estimations are propagated through all
the processing elements (PEs), which are depicted in Fig. 1b.
The computation of a PE is obtained as{

Ls,i = f(Ls+1,i, Ls+1,i+2s)

Ls,i+2s = g(Ls+1,i, Ls+1,i+2s , v̂s,i)
(1)

where {
f(a, b) = min(|a|, |b|) sgn(a) sgn(b),
g(a, b, c) = b+ (1− 2c)a,

and Ls,i and v̂s,i are the soft LLR value and the hard-bit
estimation at the s-th stage and the i-th bit, respectively. The
hard-bit values of the PE are computed as{

v̂s+1,i = v̂s,i ⊕ v̂s,i+2s

v̂s+1,i+2s = v̂s,i+2s .
(2)

The soft LLR values at the n-th stage are initialized to Ln

and the hard-bit estimation at the 0-th stage is obtained as

ûi = v̂0,i =

{
0 if ui ∈ Ac,
1−sgn(L0,i)

2 otherwise.
(3)

C. Dynamic Successive Cancellation Flip Decoding

The error-correction performance of SC decoding for short
to moderate block lengths is not satisfactory. In order to
improve its error-correction performance, a CRC of length
c is concatenated to the message word of polar codes to
check whether SC decoding succeeded or not. If the estimated
message word û does not satisfy the CRC after the initial SC
decoding attempt, a secondary SC decoding attempt is made
by flipping the estimation of an information bit in û which is
most likely to be erroneous. This process can be performed
multiple times by applying a predetermined number of SC
decoding attempts with each attempt flipping the estimation
of a different information bit. If the resulting message word
after one of the SC decoding attempts satisfies the CRC, the
decoding is declared successful. This algorithm is referred to
as SCF decoding [4]. The main problem associated with SCF
decoding is that only the first error bit after the initial SC
decoding can be corrected. However, it is common that even
after the first error bit is corrected, the resulting message word
still contains error bits. Therefore, further flipping attempts
for the additional error bits are required. DSCF decoding was
introduced in [8] to address this problem.

Let Eω = {i1, . . . , iω}, where {ui1 , . . . , uiω} ⊂ A, be the
set of bit-flipping positions of order ω, where i1 < · · · < iω ,
0 ≤ ω ≤ K + c, and |Eω| = ω. Note that E0 = ∅. In the
course of DSCF decoding, the hard-bit estimations of all the
bit indices in Eω are flipped which can be written as

û[Eω−1]i =

⎧⎪⎨
⎪⎩
0 if ui ∈ Ac,
1+sgn(L0,i)

2 if ui ∈ A, i ∈ Eω ,
1−sgn(L0,i)

2 otherwise.
(4)

The set Eω is constructed progressively based on the set
Eω−1 = {i1, . . . , iω−1}. In fact, if SC decoding fails after
flipping all the bit-flipping positions in Eω−1, iω is added
to Eω−1 to form Eω and an additional SC decoding attempt
is performed by flipping the bit estimation at all the bit-
flipping positions in Eω . Furthermore, a maximum number of
decoding attempts mω is imposed on the decoder to limit the
computational complexity in practice.

Let

p∗i (Eω−1) = Pr(û[Eω−1]i = ui|y, û[Eω−1]
i−1
0 = ui−1

0), (5)

where û[Eω−1]
i−1
0 = {û[Eω−1]0, û[Eω−1]1, . . . , û[Eω−1]i−1}

and ui−1
0 = {u0, u1, . . . , ui−1}. The probability that SC de-

coding is successful after flipping all the bit-flipping positions
in Eω is then defined as [8]

P ∗(Eω) =
∏

∀i∈A\Eω

i<iω

p∗i (Eω−1)×
∏

∀i∈Eω

(1− p∗i (Eω−1)) . (6)

273

Therefore, the bit-flipping position i∗ω that maximizes the
probability of û[Eω−1] being correctly decoded is

i∗ω = argmax
∀iω,iω−1<iω≤N−1,uiω∈A

Eω=Eω−1∪iω

P ∗(Eω). (7)

Note that the probability p∗i (Eω−1) cannot be obtained during
the course of decoding as the values of the elements of u are
unknown to the decoder [8]. As a result, DSCF uses a known
probability pi(Eω−1) to estimate p∗i (Eω−1), which is defined
as

pi(Eω−1) = max
(
Pr(û[Eω−1]i = 0|y, û[Eω−1]

i−1
0),

Pr(û[Eω−1]i = 1|y, û[Eω−1]
i−1
0)

)
=

1

1 + exp (−|L[Eω−1]0,i|) ,
(8)

where L[Eω−1]0,i is the corresponding LLR value of û[Eω−1]i.
It was shown in [8] that the estimation in (8) is not accurate.
Therefore, [8] introduced a perturbation parameter α to have
a better estimation of p∗i (Eω−1) as

p∗i (Eω−1) ≈ 1

1 + exp (−α|L[Eω−1]0,i|) . (9)

It should be noted that α ∈ R
+ is a scaling factor for the mag-

nitude of the LLR values and is determined by a Monte-Carlo
simulation. To enable a trade-off between decoding latency
and error-correction performance, instead of only flipping the
most probable bit-flipping position, DSCF decoding attempts
to improve SC decoding with a list of most probable bit-
flipping indices i∗ω at each error order ω [8].

In order to have numerically stable computations in the
hardware implementation of the DSCF decoder, the bit-
flipping metric in (6) can be written in the log-likelihood (LL)
domain as

Q∗(Eω) = − 1

α
ln(P ∗(Eω))

=
∑
∀i∈A
i≤iω

1

α
ln (1 + exp (−α|L[Eω−1]0,i|))

+
∑

∀i∈Eω

|L[Eω−1]0,i|.

(10)

Consequently, the most probable bit-flipping position i∗ω can
be found in the LL domain as

i∗ω = argmin
∀iω,iω−1<iω≤N−1,uiω∈A

Eω=Eω−1∪iω

Q∗(Eω). (11)

III. NEURAL DYNAMIC SUCCESSIVE CANCELLATION FLIP
DECODING

Efficient hardware implementation of DSCF decoding is
based on efficient implementation of the bit-flipping metric in
(10). However, (10) involves logarithmic and exponential func-
tions which are not hardware friendly. A common approach to

2 2.5 3 3.5 4 4.5 5

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

FE
R

Ideal DSCF, ω = 1 Ideal DSCF, ω = 2

DSCF using (10), ω = 1, mω = 8 DSCF using (10), ω = 2, mω = 64

DSCF using (13), ω = 1, mω = 8 DSCF using (13), ω = 2, mω = 64

Fig. 2: Effect of the simplification in (13) on the FER of DSCF
decoding for P(256, 128), concatenated with a 24-bit CRC.
The ideal DSCF decoder is also plotted as a reference.

approximate the logarithmic and exponential function in (10)
is to use the rectifier linear unit (ReLU) as [9]

ln(1 + exp(x)) ≈ ReLU(x) =

{
x if x > 0,
0 otherwise.

(12)

However, since α > 0, −α|L[Eω−1]0,i| < 0. Therefore, (10)
can be simplified as

Q∗(Eω) ≈
∑
∀i∈A
i≤iω

1

α
ReLU (−α|L[Eω−1]0,i|)

+
∑

∀i∈Eω

|L[Eω−1]0,i|

=
∑

∀i∈Eω

|L[Eω−1]0,i|, (13)

which is independent of the perturbation parameter α. Fig. 2
shows the effect of the simplification in (13) on the error-
correction performance of DSCF decoding in terms of frame
error rate (FER) for P(256, 128) concatenated with a 24-
bit CRC which is used in 5G standard [2]. In this figure,
α = 0.3367 and is calculated as described in [8]. The FER
of the ideal DSCF decoder where the erroneous bits up to
the ω-th error order can always be accurately corrected is
also plotted for comparison. It can be seen that using (13)
incurs 0.1 dB and 0.4 dB of FER performance loss for DSCF
decoding in comparison with using (10), when ω = 1 and
ω = 2 respectively, at a target FER of 10−4.

The main reason that results in such an error-correction
performance degradation is that the perturbation parameter α
is a multiplicative positive parameter which renders the ReLU
function to be zero independent of the LLR value. To address
this issue, we propose to use a perturbation parameter β ∈ R

+

which unlike α, is an additive positive parameter, and like α,

274

tries to improve the estimation of p∗i (Eω−1). We write the
proposed estimation of p∗i (Eω−1) as

p∗i (Eω−1) ≈ 1

1 + exp (β − |L[Eω−1]0,i|) . (14)

In addition, we propose to use a bit-flipping metric in the LL
domain Q∗(Eω) which is tailored to the proposed p∗i (Eω−1)
in (14) as

Q∗(Eω) = − ln(P ∗(Eω)) + ωβ

=
∑
∀i∈A
i≤iω

ln (1 + exp (β − |L[Eω−1]0,i|))

+
∑

∀i∈Eω

|L[Eω−1]0,i|,
(15)

where we used the fact that ωβ is a constant and it will not
affect the selection of i∗ω in (11).

Let us now use the ReLU function in (12) to simplify the
proposed bit-flipping metric in (15) as

Q∗(Eω) ≈
∑
∀i∈A
i≤iω

ReLU (β − |L[Eω−1]0,i|)

+
∑

∀i∈Eω

|L[Eω−1]0,i|

=
∑
∀i∈A
i≤iω

|L[Eω−1]0,i|<β

β − |L[Eω−1]0,i|

+
∑

∀i∈Eω

|L[Eω−1]0,i|, (16)

where we used the fact that if β − |L[Eω−1]0,i| > 0, then
ReLU (β − |L[Eω−1]0,i|) = β − |L[Eω−1]0,i|. It can be seen
that the resulting hardware-friendly bit-flipping metric is de-
pendent on the value of β.

We now show how to select the value of β. In conventional
DSCF decoding of [8], finding the optimal value of α in
(10) was treated as a search problem and was solved by a
Monte-Carlo simulation. In this paper, we propose to treat the
optimization of β in (15) or (16) as a learning problem and
therefore, call the proposed algorithm NDSCF decoding. In
order to do this, we use the inherent symmetric properties
of the conventional DSCF decoding algorithm, which greatly
simplify the training process as observed in [10]–[12].

Note that since pi(Eω−1) is independent from u, the per-
turbed formulations of p∗i (Eω−1) in (9) and (14) are also
independent from u. Consequently, P ∗(Eω) and Q∗(Eω) are
also independent from u. Therefore, all-zero codewords can
be used for the training of β in (15) or (16). In addition, unlike
the well-known classification problem in supervised learning
[13], obtaining the output labels for the correct bit-flipping
positions i∗ω is not mandatory in the proposed framework.
This is because if the estimation of bit i∗ω is flipped to have a
correct value for the next SC decoding attempt, the message
word given by the next SC decoding attempt will have a
correct value at the position i∗ω , which is known to be 0

Fig. 3: NDSCF decoder training framework with ω ∈ {0, 1, 2}.

since all-zero codewords are used. Instead of calculating an
estimation error between i∗ω and the true flipping position,
we propose to use the output of SC decoding to calculate
the objective loss function. Therefore, the heavy tasks of
collecting the true flipping labels and representing them as
one-hot encoded vectors are eliminated. As no labeling task
is required for the error bits and only all-zero codewords are
needed during the training, the proposed framework can be
used in applications which require channel adaptation, where
the decoder can be trained online to adapt with dynamic
changes of the communication channel.

Fig. 3 illustrates the training framework of the proposed
NDSCF decoder with ω ∈ {0, 1, 2}. The framework contains
two types of network layers, namely, SC and Q∗(Eω) layers.
The SC layer performs standard SC decoding and the bit-
flipping operations for all the bit indices in Eω . On the other
hand, the Q∗(Eω) layer is in charge of estimating the next
bit-flipping position given that the estimated message word
of the SC layer at error order ω − 1 does not satisfy the
CRC. However, as we use a batch of channel LLR values
Ln for training, the decoding of different Ln instances can
be terminated at different error orders. This problem com-
plicates the implementation of the training framework with
recent deep learning libraries [14]. To address this problem,
we treat the decoding of all the Ln instances as the worst
case scenario, where the correct message word can only
be obtained after fixing the erroneous bit of the maximum
considered error order. If a message word satisfies the CRC
before reaching the last SC layer, the remaining Q∗(Eω) layers
will maintain all the bit-flipping decisions of the successful
CRC verification. Therefore, we define a bit-flipping vector
T [Eω] = {T [Eω]0, . . . , T [Eω]N−1}, which stores the bit-
flipping decisions of all the information bits for the ω-th
SC layer, with T [Eω]i ∈ {−1,+1} such that a value of −1
indicates a bit flip and a value of +1 indicates no bit flip.

The training framework starts with the initial SC decoding
at ω = 0, which estimates the message word û[E0] and the
information bit LLR values L[E0]0. Note that |E0| = ∅ and
T [E0] = 1 where 1 is the all-ones vector of length N . If û[E0]
satisfies the CRC, the Q∗(E1) and the Q∗(E2) layers will not
alter the bit-flipping vector and therefore set T [E1] = 1 and
T [E2] = 1, respectively. As a result, û[E1] and û[E2] will have
the same decoding values as û[E0]. On the other hand, if û[E0]
does not satisfy the CRC, given the input L[E0]0, the Q∗(E1)
layer computes either (15) or (16) for all the bit indices i1
of all the candidates, where 0 ≤ i1 ≤ N − 1 and ui1 ∈ A.
The Q∗(E1) layer then selects i∗1 based on (11) and forms the

275

bit-flipping vector T [E1] as

T [E1]i =
{
+1 if 0 ≤ i ≤ N − 1, i �= i∗1,
−1 if i = i∗1,

(17)

The bit-flipping vector T [E1] is then fed into the SC layer at
error order ω = 1, which performs a standard SC decoding
given the channel LLR values Ln and estimates u[E1] based
on T [E1] as

û[E1]i =
{

1−sgn(L[E1]0,i)T [E1]i
2 if u[E1]i ∈ A,

0 otherwise.
(18)

The decoding then continues in the same manner for all the
layers at error order ω = 2. It is worth mentioning that the
SC layer is implemented by unfolding the decoding process
specified in (1), (2), and (18) at all the required stages and bit
indices.

By induction, we can write general expressions for any error
order ω for T [Eω] as

T [Eω]i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T [Eω−1]i if 0 ≤ i ≤ iω−1,

+1 if CRC(û[Eω−1]) = 0 and
iω−1 < i ≤ N − 1,

+1 if CRC(û[Eω−1]) �= 0 and
iω−1 < i ≤ N − 1, i �= i∗ω,

−1 if CRC(û[Eω−1]) �= 0 and
i = i∗ω,

(19)

and for û[Eω] as

û[Eω]i = 1− sgn(L[Eω]0,i)T [Eω]i
2

, (20)

where CRC(û[Eω−1]) = 0 indicates a successful CRC ver-
ification, and CRC(û[Eω−1]) �= 0 indicates a failed CRC
verification for û[Eω−1].

As all the network layers enable back-propagation, β is
trained with stochastic gradient descent technique [13]. In this
paper, the following objective loss function is used:

λ =
2∑

ω=1

lω, (21)

where

lω =

{
(û[Eω]tω − utω)

2 if CRC(û[Eω]) �= 0, i∗ω ≥ tω,

0 otherwise,

≈
{

1
(1+exp (L[Eω]0,tω))2

if CRC(û[Eω]) �= 0, i∗ω ≥ tω,

0 otherwise,
(22)

and tω is the first erroneous bit position of û[Eω] with utω = 0
as all-zero codewords are used. It is worth mentioning that the
loss function is designed to penalize the wrong estimation of
i∗ω from the Q∗(Eω) layers only, not to penalize the wrong
estimation of the message word û[Eω] obtained from the SC
layers.

2 2.5 3 3.5 4 4.5 5

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

FE
R

Ideal DSCF, ω = 1 Ideal DSCF, ω = 2

NDSCF using (15), ω = 1, mω = 8 NDSCF using (15), ω = 2, mω = 64

NDSCF using (16), ω = 1, mω = 8 NDSCF using (16), ω = 2, mω = 64

Fig. 4: FER of the proposed NDSCF decoding for
P(256, 128), concatenated with a 24-bit CRC. The ideal DSCF
decoder is also plotted as a reference.

TABLE I: Optimized parameter β of the proposed NDSCF
decoders.

Metric (15) (16)

ω 1 2 1 2

β 2.206 1.225 2.801 2.196

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed NDSCF
decoder is evaluated in terms of FER and the average number
of decoding attempts. Throughout this section, P(256, 128)
which is concatenated with a 24-bit CRC is considered for
the evaluation, similar to the case in Fig. 2. The NDSCF
decoders are trained with 2.5 × 105 samples of Ln at each
Eb/N0 value, where Eb/N0 ∈ {2, 3, 4, 5} dB. The parameter
β at each error order ω is initialized with a uniform distribution
within the interval of (0, 10). The number of training epochs,
mini-batch size, and learning rate are set to 50, 256, and 0.001,
respectively. During the evaluation phase, each decoder is
tested with at least 105 randomly generated codewords at each
Eb/N0 value, until at least 50 frames in error are captured.

Fig. 4 illustrates the FER of the proposed NDSCF decoder
for ω ∈ {1, 2} and mω ∈ {8, 64}. The FER of the ideal
DSCF decoder where the erroneous bits up to the ω-th error
order can always be accurately corrected is also plotted for
comparison. Table I specifies the optimized parameter β for
each bit-flipping metric in the proposed NDSCF decoder.

It can be observed from Fig. 4 that at a target FER of
10−4 and with ω = 1, the proposed NDSCF decoders have
almost the same error-correction performance compared to that
of the corresponding ideal DSCF decoder. With ω = 2 and
at the target FER of 10−4, the proposed NDSCF decoders

276

2 3 4 5

100

101

Eb/N0 [dB]

A
ve

ra
ge

D
ec

od
in

g
A

tte
m

pt
s

DSCF using (10), ω = 1, mω = 8 DSCF using (10), ω = 2, mω = 64

NDSCF using (15), ω = 1, mω = 8 NDSCF using (15), ω = 2, mω = 64

NDSCF using (16), ω = 1, mω = 8 NDSCF using (16), ω = 2, mω = 64

Fig. 5: Average number of decoding attempts of the proposed
NDSCF decoders in comparison with that of the DSCF de-
coder of [8] for P(256, 128).

suffer from around 0.1 dB of error-correction performance
loss in comparison with the corresponding ideal DSCF de-
coder. Nevertheless, it can be seen that the introduction of
the hardware-friendly metric in (16) incurs almost no error-
correction performance loss in comparison with using the
metric in (15).

Fig. 5 depicts the average number of decoding attempts
for the DSCF in [8] and the proposed NDSCF decoders. It
can be seen that the average number of decoding attempts of
the proposed NDSCF decoder is similar to that of the DSCF
decoder under the same decoding configurations. Note that
the average number of decoding attempts of all the decoders
depicted in Fig. 5 approaches 1 at high Eb/N0 values. This
indicates that at high Eb/N0 values, the complexity of the
decoders approaches the complexity of a single SC decoder.

V. CONCLUSION

In this paper, we proposed a neural dynamic successive
cancellation flip (NDSCF) decoding algorithm of polar codes.
The proposed decoder uses an additive parameter to improve
the accuracy of the bit-flipping metric and the parameter is op-
timized by a novel training framework. The proposed decoder
has the following advantages: (i) its decoding complexity
approaches that of the successive cancellation (SC) decoding
at high signal-to-noise ratio (SNR) regimes; (ii) only additions
and multiplexers are needed during the course of decoding;
(iii) negligible error correction performance loss is incurred
in comparison with the ideal dynamic successive cancellation
flip (DSCF) decoder; and (iv) it enables channel adaptation
and simplifies over-the-air training as no labeling task is
required and only all-zero codewords are needed during the
training process. With the aforementioned advantages, NDSCF
decoding is a potential candidate for practical applications in
the 5G standard.

VI. ACKNOWLEDGMENT

The authors would like to thank Arash Ardakani and Adam
Cavatassi of McGill University for their helpful and construc-

tive comments. S. A. Hashemi is supported by a Postdoctoral
Fellowship from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] 3GPP, “Multiplexing and channel coding (Release 10)
3GPP TS 21.101 v10.4.0.” Oct. 2018. [Online]. Available:
http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21 series/21101-a40.zip

[3] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, March 2015.

[4] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity
improved successive cancellation decoder for polar codes,” in 48th
Asilomar Conf. on Sig., Sys. and Comp., Nov 2014, pp. 2116–2120.

[5] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross, “Partitioned
successive-cancellation flip decoding of polar codes,” arXiv e-
prints, p. arXiv:1711.11093v4, Nov 2017. [Online]. Available:
https://arxiv.org/abs/1711.11093

[6] C. Condo, F. Ercan, and W. J. Gross, “Improved successive cancellation
flip decoding of polar codes based on error distribution,” in IEEE
Wireless Commun. and Net. Conf. Workshops, April 2018, pp. 19–24.

[7] F. Ercan, C. Condo, and W. J. Gross, “Improved bit-flipping algorithm
for successive cancellation decoding of polar codes,” IEEE Trans. on
Commun., vol. 67, no. 1, pp. 61–72, Jan 2019.

[8] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding
of polar codes,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2333–2345,
June 2018.

[9] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

[10] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. of Sel. Topics in Signal Process., vol. 12, no. 1, pp.
119–131, February 2018.

[11] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in IEEE
Int Symp. on Inf. Theory, August 2017, pp. 1361–1365.

[12] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross,
“Neural belief propagation decoding of CRC-polar concatenated codes,”
in IEEE Int. Conf. on Commun., May 2019, pp. 1–6.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, May 2015.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “Tensorflow:
A system for large-scale machine learning,” in 12th USENIX Conf.
on Operating Systems Design and Impl., ser. OSDI’16. USENIX
Association, 2016, pp. 265–283.

277

