
https://doi.org/10.1007/s11265-020-01599-y

Neural Successive Cancellation Flip Decoding of Polar Codes

Nghia Doan1 · Seyyed Ali Hashemi2 · Furkan Ercan1 · Thibaud Tonnellier1 ·Warren J. Gross1

Received: 15 April 2020 / Revised: 13 August 2020 / Accepted: 23 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error
correction performance of successive cancellation list (SCL) decoding, with an average complexity that is close to that of
successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires
costly transcendental computations to calculate a bit-flipping metric, which adversely affect its implementation complexity.
In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding
results in a significant error-correction performance loss. We then introduce an additive perturbation parameter and propose
an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding.
Machine learning (ML) techniques are then utilized to optimize the perturbation parameter of the proposed scheme.
Furthermore, a quantization scheme is developed to enable efficient hardware implementation. Simulation results show that
when compared with DSCF decoding, the proposed decoder with quantization scheme only experiences a negligible error-
correction performance degradation of less that 0.08 dB at a target frame-error-rate (FER) of 10−4, for a polar code of length
512 with 256 information bits. In addition, the bit-flipping metric computation of the proposed decoder reduces up to around
31% of the number of additions used by the bit-flipping metric computation of DSCF decoding, without any need to perform
costly transcendental computations and multiplications.

Keywords 5G · Polar codes · Deep learning · SC flip

1 Introduction

Polar codes are proven to achieve channel capacity for
any binary symmetric channel under the low-complexity

� Nghia Doan
nghia.doan@mail.mcgill.ca

Seyyed Ali Hashemi
ahashemi@stanford.edu

Furkan Ercan
furkan.ercan@mail.mcgill.ca

Thibaud Tonnellier
thibaud.tonnellier@mcgill.ca

Warren J. Gross
warren.gross@mcgill.ca

1 Department of Electrical and Computer Engineering, McGill
University, Montreal, Canada

2 Department of Electrical Engineering, Stanford University,
Stanford, USA

successive cancellation (SC) decoding as the code length
increases towards infinity [3]. Recently, polar codes are
selected for use in the enhanced mobile broadband (eMBB)
control channel of the fifth generation of cellular mobile
communications (5G standard), which requires codes of
short length [1]. The error-correction performance of
SC decoding for short polar codes does not satisfy the
requirements of the 5G standard. A SC list (SCL) decoding
was introduced in [22] to improve the error-correction
performance of SC decoding for short to moderate polar
codes by maintaining a list of candidate codewords at
each decoding step. In addition, it was observed that
under SCL decoding, the error-correction performance is
significantly enhanced when the polar code is concatenated
with a cyclic redundancy check (CRC) [22]. However, the
implementation complexity of SCL decoding grows as the
list size increases [10, 13, 14].

SC flip (SCF) decoding algorithm was introduced in [2].
Unlike SCL decoding, SCF decoding performs multiple SC
decoding attempts in series, where each decoding attempt
tries to flip the first-order erroneous information bit of the
previous decoding attempt. Similar to SCL decoding, SCF

/ Published online: 22 October 2020

Journal of Signal Processing Systems (2021) 93:631–642

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01599-y&domain=pdf
http://orcid.org/0000-0002-4428-7467
mailto: nghia.doan@mail.mcgill.ca
mailto: ahashemi@stanford.edu
mailto: furkan.ercan@mail.mcgill.ca
mailto: thibaud.tonnellier@mcgill.ca
mailto: warren.gross@mcgill.ca

decoding relies on a CRC to indicate whether the decoding
is successful or not. Several methods have been recently
proposed to improve the error-correction performance of
SCF decoding [6, 9, 11]. However they are limited with
correcting a single erroneous bit in the codeword. Dynamic
SCF (DSCF) decoding [5] is a generalization of SCF-based
decoding that is able to correct multiple erroneous bits under
SC decoding [5].

The advantage of DSCF decoding is that the average
decoding complexity of it at high signal-to-noise ratio
(SNR) regimes asymptotically approaches the decoding
complexity of SC decoding, while maintaining an error-
correction performance comparable to that of SCL decoding
[5]. However, DSCF decoding requires costly exponential
and logarithmic computations that prevent the algorithm to
be attractive for practical applications.

In this paper, we first show that a direct application of
the common approach to approximate the underlying expo-
nential and logarithmic function in the DSCF decoding
algorithm results in a significant error-correction perfor-
mance degradation. We then introduce a new trainable
perturbation parameter to the DSCF decoding algorithm
and show that the proposed decoder does not suffer from
significant error-correction performance loss if the com-
mon hardware-friendly approximation techniques are used.
Unlike DSCF decoding, where the parameter is optimized
using a Monte-Carlo simulation, the parameter optimization
of the proposed decoder is formalized as a classification
problem and is solved using machine learning (ML) tech-
niques. Thus, we name the proposed decoder as neural SCF
(NSCF) decoding. In addition, the symmetric property of
the proposed decoder is utilized to simplify the training
process. Furthermore, to address hardware implementation,
parameter quantization is considered during the training
process.

Simulation results show that compared to the state-of-
the-art DSCF decoding, both full-precision and quantized
schemes of the proposed NSCF decoder experience a
negligible error-correction performance degradation of less
than 0.08 dB at a target frame-error-rate (FER) of 10−4

for a 5G polar code of length 512, with 256 information
bits, concatenated with a 24-bit 5G CRC. The proposed
bit-flipping metric computation reduces up to 31% of the
number of additions required by that of DSCF decoding,
while completely removing the need to perform costly
transcendental computations and multiplications as is
required in DSCF decoding.

This paper is an extension of the work in [7]. Compared
to [7], an efficient training algorithm is introduced to
significantly reduce the number of training data. In addition,
a quantization scheme is considered during the parameter
optimization process that targets a hardware implementation
of the proposed decoder.

The rest of this paper is organized as follows. Section 2
briefly reviews polar codes and DSCF decoding. Section 3
describes the proposed NSCF decoder. Section 4 provides
numerical results, and finally, Section 5 presents concluding
remarks.

2 Preliminaries

2.1 Polar Codes

A polar code P(N, K) of length N with K information
bits is constructed by applying a linear transformation to
the message word u = {u0, u1, . . . , uN−1} as x = uG⊗n,
where x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is
the n-th Kronecker power of the polarizing matrix G =[

1 0
1 1

]
, and n = log2 N . The vector u contains a set A

of K information bits and a set Ac of N − K frozen bits.
The positions of the frozen bits are known to the encoder
and the decoder and their values are usually set to 0. The
codeword x is then sent through the channel using binary
phase-shift keying (BPSK) modulation. The soft vector of
the transmitted codeword received by the decoder is y =
(1−2x)+z, where 1 is an all-one vector of size N , and z ∈
R

N is the additive white Gaussian noise (AWGN) vector
with variance σ 2 and zero mean. In the log-likelihood ratio
(LLR) domain, the LLR vector of the transmitted codeword
is

Ln = 2y

σ 2
. (1)

2.2 Successive Cancellation Decoding

SC decoding can be illustrated on a polar code factor
graph representation. An example of a factor graph for
P(8, 5) is depicted in Figure 1a. To obtain the message
word, the soft LLR values and the hard bit estimations
are propagated through all the processing elements (PEs),
which are depicted in Figure 1b. Each PE performs the
following computations{

Ls,i = f (Ls+1,i , Ls+1,i+2s),

Ls,i+2s = g(Ls+1,i , Ls+1,i+2s , v̂s,i).
(2)

where Ls,i and v̂s,i are the soft LLR value and the hard-bit
estimation at the s-th stage and the i-th bit, respectively, and
the min-sum approximation formulations of the functions f

and g in (2) are{
f (a, b) = min(|a|, |b|)sgn(a)sgn(b),

g(a, b, c) = b + (1 − 2c)a.
(3)

This min-sum formulation has two benefits: first, it allows
for efficient hardware implementation [18]; and second, it

632 J Sign Process Syst (2021) 93:631–642

Figure 1 a SC decoding on the factor graph of P(8, 5) with
{u0, u1, u2} ∈ Ac, b a PE.

allows the decoder to initialize the LLR values directly by
the channel outputs without the need to estimate the channel
noise power σ 2 as is required in (1) [21, Section 5.5.1]. Thus
in this paper we use

Ln = y. (4)

The hard-bit values of the PE are computed as{
v̂s+1,i = v̂s,i ⊕ v̂s,i+2s

v̂s+1,i+2s = v̂s,i+2s .
(5)

The soft LLR values at the n-th stage are initialized to Ln

and the hard-bit estimation at the 0-th stage is obtained as

ûi = v̂0,i =
{

0 if ui ∈ Ac,
1−sgn(L0,i)

2 otherwise.
(6)

2.3 Dynamic Successive Cancellation Flip Decoding

The error-correction performance of SC decoding for short
to moderate block lengths is not satisfactory. To improve
its error-correction performance, a CRC of length c is
concatenated to the message word of polar codes to check
whether SC decoding succeeded or not. If the estimated
message word û does not satisfy the CRC after the initial
SC decoding attempt, a secondary SC decoding attempt is
made by flipping the estimation of an information bit in
û that is most likely to be erroneous. This process can

be performed multiple times by applying a predetermined
number of SC decoding attempts, with each attempt flipping
the estimation of a different information bit. If the resulting
message word after one of the SC decoding attempts
satisfies the CRC, the decoding is declared successful. This
algorithm is referred to as SCF decoding [2]. The main
problem associated with SCF decoding is that only the first
erroneous bit after the initial SC decoding can be corrected.
However, it is common that even after the first erroneous
bit is corrected, the resulting message word still contains
erroneous bits. Therefore, further flipping attempts for the
additional erroneous bits are required. DSCF decoding was
introduced in [5] to address this problem.

Let Eω = {i1, . . . , iω}, where {ui1 , . . . , uiω } ⊂ A, be the
set of bit-flipping positions of order ω such that i1 < · · · <

iω, 0 ≤ ω ≤ K + c, and |Eω| = ω. Note that E0 = ∅. In
the course of DSCF decoding, the hard-bit estimations of all
the bit indices in Eω are flipped. The set Eω is constructed
progressively based on the set Eω−1 = {i1, . . . , iω−1}. In
fact, if SC decoding fails after flipping all the bit-flipping
positions in Eω−1, iω is added to Eω−1 to form Eω and an
additional SC decoding attempt is performed by flipping
the bit estimation at all the bit-flipping positions in Eω.
Furthermore, a maximum number of decoding attempts
mω is imposed on the decoder to limit the computational
complexity in practice. The bit-flipping process of the ω-th
error order under SC decoding can be written as

û[Eω]i =

⎧⎪⎨
⎪⎩

0 if ui ∈ Ac,
1+sgn(L[Eω]0,i)

2 if ui ∈ A, i ∈ Eω,
1−sgn(L[Eω]0,i)

2 otherwise,

(7)

where L[Eω] is the vector of LLR values obtained at the
ω-th error order.

Let

p∗
i (Eω−1) = Pr(û[Eω−1]i = ui |y, û[Eω−1]i−1

0 = ui−1
0),

(8)

where{
û[Eω−1]i−1

0 = {û[Eω−1]0, û[Eω−1]1, . . . , û[Eω−1]i−1},
ui−1

0 = {u0, u1, . . . , ui−1}.
The probability that SC decoding is successful after flipping
all the bit-flipping positions in Eω is then defined as [5]

Piω =
∏

∀i∈A\Eω
i<iω

p∗
i (Eω−1) ×

∏
∀i∈Eω

(
1 − p∗

i (Eω−1)
)

. (9)

Therefore, the bit-flipping position i∗ω that maximizes the
probability of û[Eω−1] being correctly decoded is

i∗ω = arg max
∀iω∈A,iω−1<iω≤N−1

Eω=Eω−1∪iω

Piω . (10)

633J Sign Process Syst (2021) 93:631–642

Note that the probability p∗
i (Eω−1) cannot be obtained

during the course of decoding as the values of the elements
of u are unknown to the decoder [5]. As a result, DSCF
decoding uses a known probability pi(Eω−1) to estimate
p∗

i (Eω−1). The known probability pi(Eω−1) is defined as

pi(Eω−1) = max
(

Pr(û[Eω−1]i = 0|y, û[Eω−1]i−1
0),

Pr
(
û[Eω−1]i = 1|y, û[Eω−1]i−1

0

))

= 1

1 + exp
(−|L[Eω−1]0,i |

) , (11)

where L[Eω−1]0,i is the corresponding LLR value of
û[Eω−1]i . It was shown in [5] that the estimation in (11)
is not accurate. Therefore, [5] introduced a perturbation
parameter α to have a better estimation of p∗

i (Eω−1) as

p∗
i (Eω−1) ≈ 1

1 + exp
(−α|L[Eω−1]0,i |

) . (12)

It should be noted that α ∈ R
+ is a scaling factor for

the magnitude of the LLR values and is determined by
a Monte-Carlo simulation. To enable a trade-off between
decoding latency and error-correction performance, instead
of only flipping the most probable bit-flipping position,
DSCF decoding attempts to improve SC decoding with a list
of most probable bit-flipping indices i∗ω at each error order
ω [5].

In order to have numerically stable computations in the
hardware implementation of the DSCF decoder, the bit-
flipping metric in (9) can be written in the log-likelihood
(LL) domain as [5]

Qiω = − 1

α
ln(Piω)

=
∑
∀i∈A
i≤iω

1

α
ln

(
1 + exp

(−α|L[Eω−1]0,i |
))

+
∑

∀i∈Eω

|L[Eω−1]0,i |. (13)

Consequently, the most probable bit-flipping position i∗ω
can be found in the LL domain as

i∗ω = arg min
∀iω∈A,iω−1<iω≤N−1

Eω=Eω−1∪iω

Qiω . (14)

3 Neural Successive Cancellation Flip
Decoding

In this section, a novel low-complexity bit-flipping metric
computation scheme is presented to allow efficient hard-
ware implementation. Then, a machine learning framework
is introduced to optimize the parameter in the proposed
bit-flipping metric computation scheme.

3.1 Bit-flippingMetric Computation

Efficient hardware implementation of DSCF decoding is
contingent on the efficient implementation of the bit-
flipping metric in (13). However, (13) involves logarithmic
and exponential functions that are not hardware friendly.
A common approach to approximate the logarithmic and
exponential function in (13) is to use the rectifier linear unit
(ReLU) as [4]

ln(1 + exp(x)) ≈ ReLU(x) =
{

x if x > 0,

0 otherwise.
(15)

However, since α > 0, −α|L[Eω−1]0,i | < 0. Therefore, (13)
can be simplified as

Qiω ≈
∑
∀i∈A
i≤iω

1

α
ReLU

(−α|L[Eω−1]0,i |
)

+
∑

∀i∈Eω

|L[Eω−1]0,i |

=
∑

∀i∈Eω

|L[Eω−1]0,i |, (16)

which is independent of the perturbation parameter α.
Figure 2 shows the effect of the simplification in (16) on the
error-correction performance of DSCF decoding in terms of
FER for P(512, 256) and P(512, 384). The polar codes are
concatenated with a 24-bit CRC used in the control channel
of 5G standard [1]. In this figure, the FER curve of the
DSCF decoder at error order ω with mω decoding attempts
is denoted as DSCF-(ω, mω). The value of α is set to 0.3
as it provides a good result across a wide range of SNR
values [5].1 The FER of the ideal DSCF decoder, denoted
as I-DSCF, where the erroneous bits up to the ω-th error
order are always accurately corrected, is also plotted for
comparison. As seen from Figure 2, the over-simplification
of the bit-flipping metric calculation in (16) results in 0.15,
0.3, and 0.45 dB error-correction performance loss for
P(512, 256) compared to the DSCF decoder when ω =
{1, 2, 3} and mω = {10, 100, 400}, respectively, at a target
FER of 10−4. For P(512, 384), the corresponding FER
degradation caused by the over-simplification operations
is 0.05, 0.16, and 0.23 dB for ω = {1, 2, 3} and mω =
{10, 100, 400} at the same target FER of 10−4, respectively.

To address this issue, we propose to use a perturbation
parameter β ∈ R

+ that unlike α, is an additive positive
parameter, and like α, tries to improve the estimation of
p∗

i (Eω−1). We write the proposed estimation of p∗
i (Eω−1) as

p∗
i (Eω−1) ≈ 1

1 + exp
(
β − |L[Eω−1]0,i |

) . (17)

1Since the channel output y is directly used in this paper as the
decoding input, we set α = 0.6

σ 2 to obtain the same FER performance
of the DSCF decoder in [5].

634 J Sign Process Syst (2021) 93:631–642

Figure 2 Effect of the
simplification in (16) on the
FER of DSCF decoding for
P(512, 256) and P(512, 384).
The polar codes are
concatenated with a 24-bit CRC
used in 5G standard. The ideal
DSCF decoder (I-DSCF) is also
plotted as a reference.

In addition, we propose to use a bit-flipping metric in the LL
domain, Qiω , which is tailored to the proposed p∗

i (Eω−1) in
(17) as

Qiω = − ln(Piω) + ωβ

=
∑
∀i∈A
i≤iω

ln
(
1 + exp

(
β − |L[Eω−1]0,i |

))

+
∑

∀i∈Eω

|L[Eω−1]0,i |, (18)

where we used the fact that ωβ is a constant and it will not
affect the selection of i∗ω in (18).

Let us now use the ReLU function in (15) to simplify the
proposed bit-flipping metric in (18) as

Qiω ≈
∑
∀i∈A
i≤iω

ReLU
(
β − |L[Eω−1]0,i |

)

+
∑

∀i∈Eω

|L[Eω−1]0,i |, (19)

where we used the fact that if β − |L[Eω−1]0,i | > 0, then

ReLU
(
β − |L[Eω−1]0,i |

) = β − |L[Eω−1]0,i |.

It can be seen that the resulting bit-flipping metric is
dependent on the value of β, and it is hardware friendly
since only additions are required for the metric computation.
Note that in this paper, a different value of β is used to
calculate the bit-flipping metric in (19) at each error order.

We summarize the proposed NSCF decoding algorithm
which corrects up to the ω-th error order under SC decoding
in Algorithm 1. We denote by Sτ (0 ≤ τ ≤ ω) a data

635J Sign Process Syst (2021) 93:631–642

structure whose elements contain a pair of [Qiτ , Eτ], where
Qiτ is the bit-flipping metric associated with a bit-flipping
set Eτ at the τ -th error order. Note that

|Sτ |max =
{

0 if τ = 0

mτ − ∑τ−1
k=0 mk otherwise,

thus the maximum number of all the additional decoding
attempts up to the τ -th error order is mτ .

At the τ -th error order, the proposed decoder loops
over all the candidate bit-flipping sets Eτ stored in Sτ . SC
decoding with bit-flipping operations is then carried out
given a bit-flipping set Eτ . At the i-th information bit and
if i > arg max∀j∈Eτ

{Eτ }, a new candidate bit-flipping set is
constructed for the (τ + 1)-th error order by concatenating
the current information bit position to the current bit-
flipping set Eτ , i.e., Eτ+1 ← Eτ ∪ i. The bit-flipping metric
Qiτ+1 , which is associated with the newly constructed bit-
flipping set Eτ+1, is then calculated using the proposed
bit-flipping metric computation in (19). The data structure
Sτ+1 is then updated with the newly constructed element
[Qiτ+1 , Eτ+1] by performing an insertion sort using the new
bit-flipping metric Qiτ+1 . If Qiτ+1 is among the |Sτ+1|max

smallest bit-flipping metrics of Sτ+1, the new element
is inserted in Sτ+1, and the element that has the largest
bit-flipping metric is discarded. Otherwise, the newly
constructed element is discarded. This process is carried out
in the InsertionSort(·) function denoted in Algorithm 1.
Note that if the resulting estimated message word given the
bit-flipping set Eτ , i.e. û[Eτ], satisfies the CRC verification,
the decoding terminates and outputs û[Eτ] as the estimated
message word. Also note that the proposed NSCF decoder
reverts to the conventional DSCF decoder by replacing (19)
in Algorithm 1 with (13).

3.2 Parameter Optimization

In this paper, we formalize the optimization problem of the
additive parameter β as a separate classification problem
at each error order and use ML techniques to train β. As
observed from (19), the bit-flipping metric computation
takes the absolute values of the soft messages given by
SC decoding as the input. Therefore, the bit-flipping metric
computation does not depend on the value of ui . Thus, it
allows the use of the all-zero codeword for the training
of β, which simplifies the data collection process, as also
observed in [8, 19].

In [7], the decoding process is modeled as a deep
neural network that consists of ω unfolded DSCF decoding
attempts. The training data used to train the parameter at
the ω-th error order in [7] includes both the samples that
cannot be correctly decoded and those that can be correctly
decoded up to the (ω−1)-th error order. As a result, the size
of the training dataset is excessively large. For example, the

framework introduced in [7] requires 2.5 × 105 samples for
ω = 2. Unlike [7], in this paper we consider the parameter
optimization of each error order individually. To train the
parameter at the ω-th error order, only the frames that do
not satisfy the CRC verification of the ideal DSCF decoder
at the (ω − 1)-th error order are used. In fact, the frames
that are not decoded correctly contribute to the training and
optimization of parameter β. It is observed that with the new
training process, only 5000 samples are required to train β

at each error order.
Let Tω−1 be the set of the bit-flipping indices, and tω−1

be the (ω − 1)-th bit-flipping index of the (ω − 1)-th
ideal DSCF decoder. In addition, let L[Tω−1] be the LLR
values of the (w − 1)-th ideal DSCF decoder given that the
corresponding hard decisions of L[Tω−1]0 do not satisfy the
CRC verification. For the rest of this paper, since we only
consider non-frozen bits, all the bit indices only indicate
non-frozen bit positions. Thus, they are in the range of
[0, K + c − 1].

The bit-flipping metric rendered for the iω-th bit index,
tω−1 < iω < K + c, of the ideal DSCF decoder is written as

Qiω ≈ ∑
0≤i≤iω

ReLU
(
β − |L[Tω−1]0,i |

)
+ ∑

∀i∈{Tω−1∪iω} |L[Tω−1]0,i |. (20)

The value of Qiω is normalized using the soft-min function
δ(·) as

Õiω = δ(Qiω) = exp(−Qiω)∑K+C−1
j=tω−1+1 exp(−Qjω)

. (21)

It can be seen that for all values of iω, 0 < Õiω < 1, and

i∗ω = arg min
∀iω

tω−1<iω<K+c

Qiω = arg max
∀iω

tω−1<iω<K+c

Õiω , (22)

where i∗ω is the most probable bit-flipping position. Note
that Õiω can be viewed as the predicted bit-flipping
probability. Let us define the training label Oiω as

Oiω =
{

1 if iω = tω,

0 otherwise.
(23)

In this paper, the binary cross-entropy loss function is used
to quantify the differences of the estimated value Õiω and
the exact training label Oiω . This can be written as

L = −
K+C−1∑

iω=tω−1+1

[
Oiω ln Õiω + (1 − Oiω) ln(1 − Õiω)

]
.

(24)

By using the stochastic gradient-descent optimization
technique or its variants, the parameter β can be optimized
to minimize the loss L [17]. The gradient of the objective

636 J Sign Process Syst (2021) 93:631–642

loss function with respect to the additive parameter β can be
obtained as

∂L
∂β

=
K+C−1∑

iω=tω−1+1

∂L
∂Õiω

∂Õiω

∂Qiω

∂Qiω

∂β
(25)

where

∂L
∂Õiω

= Õiω − Oiω

Õiω (1 − Õiω)
, (26)

∂Õiω

∂Qiω

= Õiω (Õiω − 1), (27)

(28)

and is an indicator function such that

(29)

Substituting (26)-(28) into (25) gives

(30)

In this paper, we use Root Mean Square Propagation
(RMSProp), a variant of the SGD optimization technique,
to update the parameter β [15]. The additive parameter β is
then updated as [15]

β := β − λ√
μβ

∂L
∂β

, (31)

where μβ is a running average of the magnitudes of recent
gradients for β that is defined as [15]

μβ := γμβ + (1 − γ)

(
∂L
∂β

)2

, (32)

and λ and γ are the learning rate and the forgetting factor,
respectively. The value of μβ is initialized for the first
update as

μβ = (1 − γ)

(
∂L
∂β

)2

. (33)

It is worth mentioning that by manually deriving ∂L
∂β

as
denoted in (30), the additive parameter β can be optimized
using a SGD-based optimization technique at the decoder
side without the need of a sophisticated machine learning
library, which paves the way for a dedicated hardware
implementation that optimizes β online using the all-zero
codeword pilot signals.

3.3 Quantization Scheme

If training with quantization is considered, the additive
parameter β is optimized by taking into account the
quantization effect caused by the SC decoding operations.
At a given error order ω, quantization operations are
first applied to the ideal DSCF decoders to obtain the
quantized values of L[Tω−1]. In addition, the forward
pass computations of the bit-flipping metric in (20) are
also quantized. On the other hand, all other computations
in (21)-(33) required for the backward pass to obtain
the partial derivative of β are carried out in the full-
precision representation. After each parameter update in
(31), the value of β is quantized for the next forward pass
computation carried out in (20). Note that this technique
is widely used for the training of quantized deep neural
networks [12]. Given the quantized value of β, in the
decoding phase, NSCF decoding performs all of the SC
decoding operations as well as the bit-flipping metric
computations in (19) using a single quantization scheme,
which is characterized by a set of quantization parameters.

To find the quantization parameters for the proposed
NSCF decoder, we evaluate the quantization parameters
on the ideal DSCF decoder and use those quantization
parameters in the proposed NSCF decoder. Let q(n, m)

denote a quantization configuration where n and m indicate
the number of binary bits used to represent the integral
and fractional parts of a floating-point number, respectively.
Figure 3 compares the FER of the ideal DSCF decoder
when the soft messages used by SC decoding are quantized
using q(2, 3), q(3, 2), and q(3, 3) formats. As observed
from Figure 3, the q(3, 3) format introduces almost no FER
performance degradation compared to the full-precision
ideal DSCF decoder for both P(512, 256) and P(512, 384).
Therefore, we select q(3, 3) as the quantization scheme for
the proposed NSCF decoder.

4 Evaluation

In this section, we first provide the training results for both
full-precision and quantized scenarios. We then evaluate the
error-correction performance and decoding latency of the
proposed decoders.

4.1 Parameter Optimization Results

In this paper, we use Pytorch [20] to implement the
parameter optimization framework2. We use 5000 samples

2We manually implement the computations in (20)-(33) instead of
using the built-in automatic differentiation mechanism and SGD-based
optimizers supported by Pytorch. The main purpose of using Pytorch
is to make use of its GPU support to reduce the training time.

637J Sign Process Syst (2021) 93:631–642

Figure 3 Effect of quantization
on the FER of ideal DSCF
decoding for P(512, 256) and
P(512, 384). The polar codes
are concatenated with a 24-bit
CRC.

to optimize β at each error order ω ∈ {1, 2, 3} individually,
with 4000 samples used for training and 1000 samples used
for validation. In addition, the training samples are obtained
at Eb/N0 = 3.0 dB and Eb/N0 = 4.0 dB for P(512, 256)

and P(512, 384), respectively. For both full-precision and
quantized scenarios, the learning rate λ and the forgetting
factor γ used in (31) and (32) are set to 5 × 10−4 and 0.9,
respectively. The mini-batch size is 200 and the number
of training epochs is 40. Initially, the value of β at each
error order is drawn from an i.i.d distribution in the range
of (0, 5). When training with quantization, β is in q(2, 3)

format and the bit-flipping metric Qiω is in q(3, 3) format.
We do not use a sign bit for the quantized values of β

and Qiω .
Figure 4 illustrates the training (validation) loss and

accuracy when the β parameter is optimized for ω = 3
with P(512, 256) and P(512, 384). As the optimization
of β is formalized as a classification process, the training
(validation) accuracy depicted in Figure 4 indicates the
probability that the estimated error bit i∗ω is the correct
bit-flipping index tω. In the ML literature, the accuracy
considered in Figure 4 is also referred as the top-1 accuracy
in a classification task [16]. It can be observed that for both
full-precision and quantized scenarios, the training loss and
the validation loss values are almost similar, indicating that
the β parameter is generalized well for unseen samples. The
value of β is then selected at the training epoch that has the
highest validation accuracy. It can also be observed that the
full-precision model provides a smoother learning curves
compared to those of the quantized model. This is because

the quantized model often requires more training epochs
than the full-precision model to update the parameter.

Table 1 provides the optimized values of β for both
full-precision and quantized formats for P(512, 256) and
P(512, 384). As the values of β at all error orders are
within the range of (0, 1), during the decoding phase, β is
quantized using the q(0, 3) format.

4.2 Error-Correction Performance

The error-correction performance of the proposed decoders
in terms of FER are evaluated using the optimized values
of β. We use the same polar codes P(512, 256) and
P(512, 384) as in Figures 2 and 3 to evaluate the error-
correction performance of the proposed decoders. The FERs
of the DSCF and NSCF at error order ω, with a maximum
of mω attempts, are denoted as DSCF-(ω, mω) and NSCF-
(ω, mω), respectively, and are shown in Figures 5 and 6.
In addition, the FERs of the ideal DSCF decoder, denoted
as I-DSCF, are plotted for comparison. In this paper, we
set ω ∈ {1, 2, 3} and the number of maximum decoding
attempts for all the DSCF and NSCF decoders are mω ∈
{10, 100, 400}, respectively. The bit-flipping metric used
for DSCF decoding for all the simulations is calculated as
in (13).

It can be seen in Figure 5 that for ω = {1, 2}, the
proposed decoder in full-precision and in q(3, 3) formats
experiences almost no error-correction performance degra-
dation compared to the ideal DSCF decoder. At ω = 3,
the error-correction performance of the NSCF decoder in

638 J Sign Process Syst (2021) 93:631–642

Figure 4 Plot of training
(validation) accuracy and loss of
the full-precision and quantized
models when ω = 3 for
P(512, 256). The value of β is
selected at the epoch that has the
highest validation accuracy.

full-precision and in quantized schemes only has a degra-
dation of less than 0.1 dB at the target FER of 10−4

when compared to that of the ideal DSCF decoder for both
P(512, 256) and P(512, 384). On the other hand, when
compared with that of the DSCF decoder, the FER per-
formance loss of the proposed decoder is negligible at all
considered Eb/N0 values.

Figure 6 shows the FER performances of the proposed
NSCF decoders and those of the CRC-aided SCL (CA-
SCL) decoders [4] with list size mL, denoted as CA-
SCLmL, where mL ∈ {2, 4, 8, 16}. It can be seen that for
P(512, 256), at the target FER of 10−4, compared to CA-
SCL with mL ∈ {2, 4, 8}, the NSCF decoders at mω ∈
{1, 2, 3} obtain the FER performance gains of up to 0.1 dB.
Moreover, for P(512, 256), the proposed NSCF decoder at
mω = 3 only experiences an error-correction performance
loss of less than 0.1 dB compared to CA-SCL16, at the same
target FER. In the case of P(512, 384), at the target FER

Table 1 Optimized parameter β at each error order of the proposed
NSCF decoders.

ω 1 2 3

β P(512, 256) Full-precision 0.9772 0.8166 0.7046

q(0, 3) 0.875 0.75 0.625

P(512, 384) Full-precision 0.7993 0.3671 0.3243

q(0, 3) 0.5 0.375 0.375

of 10−4 the NSCF decoder at mω ∈ {1, 2, 3} obtains the
FER gains of at least 0.2 dB when compared with the CA-
SCL decoder with list size mL ∈ {2, 4, 8}, respectively. In
addition, for P(512, 384) the NSCF decoder at ω = 3 has a
slightly better error correction performance when compared
with that of CA-SCL16 at the same target FER.

4.3 Complexity Reduction and Decoding Latency

Since DSCF and NSCF decoding algorithms both rely
on SC decoding algorithm, the only difference in terms
of computational complexity comes from the bit-flipping
metric computation. Table 2 shows the average number of
computations performed at Eb/N0 = 3 dB for P(512, 256)

and Eb/N0 = 4 dB for P(512, 384), which are required
by the bit-flipping metric calculation of the decoders in
Figure 5. Note that the bit-flipping metric computations of
the DSCF decoder and that of the proposed NSCF decoder
are specified in (13) and (19), respectively.

It can be seen in Table 2 that for both full-precision and
quantized schemes, the proposed NSCF decoder requires
around 31% fewer total number of additions compared
to the DSCF decoder at all error orders. In addition, for
ω = {2, 3}, the prediction of the quantized bit-flipping
model of NSCF is less accurate compared with that of the
full-precision model, thus it results in a slightly larger num-
ber of additions compared to the full-precision model. On
the other hand, at ω = 1, the average number additions

639J Sign Process Syst (2021) 93:631–642

Figure 5 FER performance of
the proposed decoders for
P(512, 256) and P(512, 384).
The polar codes are
concatenated with a 24-bit CRC.
The FERs of the full-precision
DSCF and ideal DSCF
(I-DSCF) decoders are also
plotted for comparison.

required by the bit-flipping metric computation of the
NSCF decoder is the same for both quantized and full-
precision schemes. It can also be observed that the pro-
posed bit-flipping metric computation completely removes
the need to perform multiplications and costly transcen-
dental computations, while only experiencing negligible

error-correction performance loss when compared to DSCF
as observed in Figure 5.

Figure 7 depicts the average number of decoding
attempts for the DSCF decoder and the proposed NSCF
decoder. It can be seen that when Eb/N0 > 2.5 dB
for P(512, 256) and Eb/N0 > 3.5 dB for P(512, 384),

Figure 6 FER comparison of
the proposed NSCF decoders
and CA-SCL decoders in [4].

640 J Sign Process Syst (2021) 93:631–642

Table 2 Computational
complexity of the bit-flipping
metric in terms of the average
number of operations
performed for different polar
codes, which are concatenated
with a 24-bit CRC used in 5G.

ω mω Decoder ln / exp × +

P(512, 256) 1 10 DSCF 560 560 840

NSCF 0 0 560

NSCF-q(3, 3) 0 0 560

2 100 DSCF 620.77 620.77 923.36

NSCF 0 0 621.55

NSCF-q(3, 3) 0 0 626.59

3 400 DSCF 663.17 663.17 981.05

NSCF 0 0 666.55

NSCF-q(3, 3) 0 0 677.68

P(512, 384) 1 10 DSCF 816 816 1224

NSCF 0 0 816

NSCF-q(3, 3) 0 0 816

2 100 DSCF 933.67 933.67 1390.8

NSCF 0 0 949.3

NSCF-q(3, 3) 0 0 956.8

3 400 DSCF 1020.32 1020.32 1512.7

NSCF 0 0 1058.8

NSCF-q(3, 3) 0 0 1059.9

the average number of decoding attempts of the proposed
NSCF decoder is similar to that of the DSCF decoder,
under the same decoding configurations. Note that the
average number of decoding attempts of all the decoders
depicted in Figure 7 approaches 1 at high Eb/N0 values.

This also indicates that at high SNR regime, the average
complexity of all the DSCF-based decoders approaches
the complexity of a single SC decoder, while their error-
correction performance is comparable to that of CA-SCL
decoder as observed from Figures 5 and 6.

Figure 7 Average number of
decoding attempts.

641J Sign Process Syst (2021) 93:631–642

5 Conclusion

In this paper, we proposed a neural successive cancellation
flip (NSCF) decoding algorithm for polar codes. The
proposed decoder uses an additive parameter to improve
the accuracy of the bit-flipping metric and the parameter
is optimized by a novel training framework. The proposed
decoder has the following advantages: (i) its average
decoding complexity approaches that of the successive
cancellation (SC) decoding at high signal-to-noise ratio
(SNR) regimes; (ii) only additions are needed during
the course of decoding; (iii) negligible error-correction
performance loss is incurred in comparison with the ideal
dynamic successive cancellation flip (DSCF) decoder. With
these advantages, the proposed decoder is a potential
candidate for an efficient hardware implementation of a
bit-flipping decoding algorithm for polar codes.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

References

1. 3GPP (2018). Multiplexing and channel coding (Release
10) 3GPP TS 21.101 v10.4.0. http://www.3gpp.org/ftp/Specs/
2018-09/Rel-10/21 series/21101-a40.zip.

2. Afisiadis, O., Balatsoukas-Stimming, A., Burg, A. (2014). A low-
complexity improved successive cancellation decoder for polar
codes. In 48Th asilomar conference on signals, systems, and com-
puters (pp. 2116–2120), https://doi.org/10.1109/ACSSC.2014.
7094848.

3. Arıkan, E. (2009). Channel polarization: a method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels. IEEE Transactions on Information Theory, 55(7), 3051–
3073. https://doi.org/10.1109/TIT.2009.2021379.

4. Balatsoukas-Stimming, A., Parizi, M.B., Burg, A. (2015). LLR-
Based successive cancellation list decoding of polar codes.
IEEE Transactions on Signal Processing, 63(19), 5165–5179.
https://doi.org/10.1109/TSP.2015.2439211.

5. Chandesris, L., Savin, V., Declercq, D. (2018). Dynamic-SCFlip
decoding of polar codes. IEEE Transactions on Communica-
tions, 66(6), 2333–2345. https://doi.org/10.1109/TCOMM.2018.
2793887.

6. Condo, C., Ercan, F., Gross, W.J. (2018). Improved successive
cancellation flip decoding of polar codes based on error distribu-
tion. In IEEE wireless communications and networking conference
workshops (pp. 19–24), https://doi.org/10.1109/WCNCW.2018.
8368991.

7. Doan, N., Hashemi, S.A., Ercan, F., Tonnellier, T., Gross, W.J.
(2019). Neural dynamic successive cancellation flip decoding of
polar codes. In IEEE international workshop on signal processing
systems (pp. 272–277), https://doi.org/10.1109/SiPS47522.2019.
9020513.

8. Doan, N., Hashemi, S.A., Mambou, E.N., Tonnellier, T., Gross,
W.J. (2019). Neural belief propagation decoding of CRC-polar
concatenated codes. In IEEE international conference on commu-
nications (pp. 1–6), https://doi.org/10.1109/ICC.2019.8761399.

9. Ercan, F., Condo, C., Gross, W.J. (2019). Improved bit-
flipping algorithm for successive cancellation decoding of polar
codes. IEEE Transactions on Communications, 67(1), 61–72.
https://doi.org/10.1109/TCOMM.2018.2873322.

10. Ercan, F., Condo, C., Hashemi, S.A., Gross, W.J. (2017). On
error-correction performance and implementation of polar code
list decoders for 5g. In 2017 55th annual allerton conference on
communication, control, and computing (allerton) (pp. 443–449),
https://doi.org/10.1109/ALLERTON.2017.8262771.

11. Ercan, F., Condo, C., Hashemi, S.A., Gross, W.J. (2018).
Partitioned successive-cancellation flip decoding of polar codes.
In IEEE international conference on communications (pp. 1–6),
https://doi.org/10.1109/ICC.2018.8422464.

12. Han, S., Mao, H., Dally, W.J. (2016). Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and huffman coding. International Conference on Learning Rep-
resentative, arXiv:1510.00149.

13. Hashemi, S.A., Condo, C., Ercan, F., Gross, W.J. (2017).
Memory-efficient polar decoders. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 7(4), 604–615.
https://doi.org/10.1109/JETCAS.2017.2764421.

14. Hashemi, S.A., Condo, C., Gross, W.J. (2017). Fast and
flexible successive-cancellation list decoders for polar codes.
IEEE Transactions on Signal Processing, 65(21), 5756–5769.
https://doi.org/10.1109/TSP.2017.2740204.

15. Hinton, G., Srivastava, N., Swersky, K. (2012). Neural networks
for machine learning lecture 6a overview of mini-batch gradient
descent http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture
slides lec6.pdf.

16. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems (pp. 1097–
1105).

17. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature,
521(7553), 436.

18. Leroux, C., Raymond, A.J., Sarkis, G., Gross, W.J. (2013). A
semi-parallel successive-cancellation decoder for polar codes.
IEEE Transactions on Signal Processing, 61(2), 289–299.
https://doi.org/10.1109/TSP.2012.2223693.

19. Nachmani, E., Marciano, E., Lugosch, L., Gross, W.J., Burshtein,
D., Be’ery, Y. (2018). Deep learning methods for improved decod-
ing of linear codes. IEEE Journal of Selected Topics in Signal
Processing, 12(1), 119–131. https://doi.org/10.1109/JSTSP.2017.
2788405.

20. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017). Automatic
differentiation in pytorch.

21. Ryan, W., & Lin, S. (2009). Channel codes: classical and modern.
Cambridge: Cambridge University Press.

22. Tal, I., & Vardy, A. (2015). List decoding of polar codes.
IEEE Transactions on Information Theory, 61(5), 2213–2226.
https://doi.org/10.1109/TIT.2015.2410251.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

642 J Sign Process Syst (2021) 93:631–642

http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
https://doi.org/10.1109/ACSSC.2014.7094848
https://doi.org/10.1109/ACSSC.2014.7094848
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/TSP.2015.2439211
https://doi.org/10.1109/TCOMM.2018.2793887
https://doi.org/10.1109/TCOMM.2018.2793887
https://doi.org/10.1109/WCNCW.2018.8368991
https://doi.org/10.1109/WCNCW.2018.8368991
https://doi.org/10.1109/SiPS47522.2019.9020513
https://doi.org/10.1109/SiPS47522.2019.9020513
https://doi.org/10.1109/ICC.2019.8761399
https://doi.org/10.1109/TCOMM.2018.2873322
https://doi.org/10.1109/ALLERTON.2017.8262771
https://doi.org/10.1109/ICC.2018.8422464
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/JETCAS.2017.2764421
https://doi.org/10.1109/TSP.2017.2740204
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1109/TSP.2012.2223693
https://doi.org/10.1109/JSTSP.2017.2788405
https://doi.org/10.1109/JSTSP.2017.2788405
https://doi.org/10.1109/TIT.2015.2410251

	Neural Successive Cancellation Flip Decoding of Polar Codes
	Abstract
	Introduction
	Preliminaries
	Polar Codes
	Successive Cancellation Decoding
	Dynamic Successive Cancellation Flip Decoding

	Neural Successive Cancellation Flip Decoding
	Bit-flipping Metric Computation
	Parameter Optimization
	Quantization Scheme

	Evaluation
	Parameter Optimization Results
	Error-Correction Performance
	Complexity Reduction and Decoding Latency

	Conclusion
	Compliance with Ethical Standards
	References

