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ABSTRACT

SC-Flip (SCF) decoding is a low-complexity polar code de-
coding algorithm alternative to SC-List (SCL) algorithm with
small list sizes. To achieve the performance of the SCL al-
gorithm with large list sizes, the Dynamic SC-Flip (DSCF)
algorithm was proposed. However, DSCF involves logarith-
mic and exponential computations that are not suitable for
practical hardware implementations. In this work, we pro-
pose a simple approximation that replaces the transcendental
computations of DSCF decoding. Moreover, we show how
to incorporate fast decoding techniques with the DSCF algo-
rithm. With proposed approaches, the computational com-
plexity of DSCF decoding is remarkably reduced while main-
taining equivalent decoding performance.

Index Terms— Polar codes, 5G, SC-Flip decoding

1. INTRODUCTION

Polar codes, introduced by Arikan in [1], are a class of for-
ward error-correcting codes that asymptotically achieve the
capacity of binary-input discrete memoryless channels. They
have been selected as a coding scheme within the 5" genera-
tion wireless communication (5G) standard [2]. Although the
successive cancellation (SC) decoding algorithm enables to
prove the capacity achieving property of polar codes, its error-
correction performance is mediocre at practical code lengths.

Various SC-based decoding algorithms have been pro-
posed to enhance the error-correction performance, such as
SC-List (SCL) [3], SC-Flip (SCF) [4] and SC-Stack (SCS) [5]
decoding. SC-List decoding uses several SC decoders in
parallel to maintain a list of candidate codewords. Error-
correction performance of SCL decoding improves with the
list size, which adversely impacts its implementation com-
plexity [6]. Similarly, SCS can be parametrized to match
the SCL decoding performance but exhibits a high memory
complexity [7]. SCF decoding uses several SC decoding
attempts when an initial SC decoding fails due to a sin-
gle channel-induced error. It has improved error-correction
performance and has an average computational complexity
similar to that of SC at medium-to-high signal-to-noise ratio
(SNR) regions. However, SCF has variable decoding latency,
and its error-correction performance can only compare with
SCL decoding with small list sizes. Existing improvements
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on SCF decoding [8-10] are limited with correction of a sin-
gle channel-induced error. To improve the error-correction
performance, Dynamic SC-Flip (DSCF) decoding was pro-
posed in [11], which can find more than one channel-induced
errors. However, operations involved in DSCF decoding re-
quire logarithmic and exponential calculations, which make
it challenging for practical hardware implementations.

To improve the throughput of SC-based decoders, the
identification of easily-decoded sub-codes found in polar
codes — called special nodes — was first introduced in [12,13].
Decoding techniques of these special nodes are extended for
SCF decoding in [14, 15]. However, how to consider such
special nodes under DSCF decoding remains unexplored.

In this paper, we first show that the transcendental com-
putations in the DSCF algorithm can be replaced by a simple
approximation, that allows DSCF to be considered for practi-
cal hardware implementations. We show that the proposed
approximation does not incur any significant loss in error-
correction performance. Then, we propose novel methods
to consider special nodes under DSCF decoding. We show
that the considered decoding techniques can reduce the aver-
age number of decoding steps by up to a factor of 6.4, while
the error-correction performance remains similar to that of the
original DSCF algorithm. These two improvements will al-
low to consider hardware implementations targeting high av-
erage throughput of DSCF-based decoding algorithms.

The organization of this paper is as follows. Encoding
and decoding of polar codes are described in Section 2. The
approximation that replaces the transcendental computations
in DSCF decoding is explained in Section 3. The fast decod-
ing techniques for DSCF decoding are proposed in Section 4.
The proposed simplifications are combined in Section 5 and
a complexity reduction analysis and frame error rate (FER)
performance comparisons are provided. Finally, conclusions
and future works are drawn in Section 6.

2. BACKGROUND

2.1. Polar Codes

A polar code PC(N, K) splits N channels into K reliable
ones that are used to transmit the information bits, and N — K
unreliable ones, which are frozen to a known value (usually
to 0). The set of frozen and non-frozen indices are denoted
with A® and A, respectively. The encoding of a polar code
is a linear transformation, such that x = uG®™, where =
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is the encoded vector, w is the message vector, and the gen-
erator matrix G®" is the n-th Kronecker product (®) of the
polar code kernel G = [} ] and n = log, N, n € Z*. The
bits are estimated sequentially in SC decoding of polar codes,
starting from the leftmost index. Estimation of each bit @, de-
pends on the channel observation y and previously decoded
bits tg.;—1, such that

0, ifPrly, @o:-1|u; = 0] > Prly, @o:4.1|u; = 1];
0 =140, ifie A°;
1, otherwise.

ey

The decoding schedule of the SC algorithm can be inter-
preted as a binary tree search that starts from the root node
(located at the stage S = n), and with priority given to the
left branch. Each node contains N, = 2% soft information,
interpreted in log-likelihood ratio (LLR) form (L®) and N,
hard information (3°), called partial sums. The bit estima-
tions are performed at leaf node stage S = 0.

It was shown in [12] and [13] that nodes in the SC de-
coding tree with special frozen bit patterns are not needed
to be explicitly traversed; dedicated fast decoding techniques
for such special nodes improves the throughput of the decod-
ing substantially. Among these special nodes, decoding of
Rate-0 (where all indices are frozen) Rate-1 (where no in-
dices are frozen), and Rep (where only the rightmost index is
non-frozen) are within the scope of this work.

2.2. SC-Flip and Dynamic SC-Flip Decoding

When the SC decoding fails, the incorrect bit estimations are
either due to errors that are caused by the noisy channel or
due to propagated errors as a result of the sequential decod-
ing schedule. If a channel-induced error in a failed estimated
codeword is corrected, then its associated propagated errors —
if any — also disappear.

When the observation above was made in [4], it was also
observed that most of the decoding failures are due to a single
channel-induced error. Hence, if a single channel-induced
error was avoided, then the error-correction performance
would improve. Aided by an outer cyclic redundancy check
(CRC) code for detecting whether an initial SC decoding
has failed, SCF decoding first creates a list of bit-flipping
positions sorted accordingly to their LLR magnitudes. Then,
the SC decoding process is relaunched but the hard decision
at the index that holds the next lowest LLR magnitude is
flipped. This is repeated until no errors are detected or until
all positions in the list have been considered.

There are two main problems associated with SCF decod-
ing. The first problem is that SCF algorithm can only cor-
rect at most one single channel-induced error, so its perfor-
mance improvement is limited. The second problem is that
SCEF relies solely on the LLR magnitudes to decide on the bit-
flipping positions, which is shown to be suboptimal in [16].

DSCF decoding [11] tackles the two problems associated
with the SCF decoding. It updates the set of flipping indices

progressively over the course of each decoding attempt. Let
Eo = {i1,...,i,} denote the set of bit-flipping indices at
an additional decoding attempt, where i1 < --- < 14, and
0 < w < K + C. Note that C is the CRC remainder length.
In this sense, w is the number of attempted channel-induced
errors, which is addressed as the decoding order. &, is built
progressively over a prior additional decoding attempt with

Ew—1 ={i1,...,iu—1}. The metric associated with &, is
Mo(€s) = D 1Ll + Sa(&), @)
JEE,
where 1
Sal€u) =~ ; log(1 + exp(—alL°[Eu_1]5)).  (3)
j<ie,
VjeA

In (2) and (3), « is an approximation factor that can be op-
timized via Monte-Carlo simulations [11] or machine learn-
ing [17], and LO[Ew_l]j is the LLR at index j of the current
decoding attempt. Similar to SCF decoding, the bit-flipping
set that has the lowest M, (€,,) value is used at each extra de-
coding attempt. DSCF demonstrates superior error-correction
performance compared to SCF decoding, and its associated
metric calculation is shown to be more effective in finding the
erroneous indices. However, the logarithmic and exponential
operations in (3) make DSCF inconvenient for efficient hard-
ware implementations. We refer to [11, 16, 17] for acquiring
in-depth knowledge on how M, (&) (2) is derived for the
DSCF decoding. Note that the SC-Oracle (SCO) algorithm
is a genie-aided algorithm (i.e. the message is known to the
decoder) that can evaluate the ideal performance of SCF and
DSCEF algorithms if all the first w channel-induced errors are
successfully corrected.

3. APPROXIMATIONS FOR DSCF DECODING

When compared to SCF, DSCF decoding has significantly im-
proved error-correction performance not only because it can
correct more than one single channel-induced error, but also
because it can find erroneous indices more effectively. In fact,
without S, (€,) in (2) and with w = 1, DSCF reverts to SCF
decoding. Therefore, S, (&,,) can be interpreted as an adjust-
ment function for M, (&,,) towards efficient identification of
the correct bit-flipping indices. We reformulate S, (€,,) in (3)

as
Sal(€) = Y fal|LEul;)), )

Vi
where falz) = élog(l + exp(—ax)). )

Following the Monte-Carlo optimizations from [11], o =
0.3 is used throughout this paper. Interestingly, it was shown
that a similar expression, f(z) = log(1 + exp(—z)), used in
the soft-input soft-output decoding algorithm of turbo codes,
can be approximated in different ways without adversely af-
fecting the decoding performance [18, 19]. Inspired from the
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Fig. 1. f,(x) with & = 0.3, and its constant approximation

fa(x).

constant log-MAP approximation in [18], we use a similar ap-
proximation to simplify f,(x) as:

3
frmoste) = {2

For illustration purpose, Fig. 1 plots the original function f,
and its proposed approximation f, with @ = 0.3. Note that
in [20], a linear approximation to f,(x) was used follow-
ing [19] to reduce its complexity. However, our approach to
approximate f,(x) is simpler as it only involves a constant
value. Fig. 2 compares the FER performance of DSCF de-
coding with the constant approximation (6) against its origi-
nal approach from [11], using length-1024 polar codes with 3
different rates. The polar codes are constructed using the reli-
ability sequence from [2]. The length-16 CRC defined in [2]
is serially concatenated with the polar code. A BPSK mod-
ulation and an AWGN channel are considered. Note that the
same settings are used for all the following Monte-Carlo sim-
ulations. Three error orders w € {1, 2, 3} are targeted, each of
which corresponding to T},.. € {10,40,200}, respectively.
The decoding performance with SC-Oracle for each w value is
also shown. Observe that in the considered cases, the approx-
imated DSCF achieves similar decoding performance as the
original approach but without transcendental computations,
since they are replaced by a constant.

4. DECODING OF SPECIAL NODES UNDER DSCF

if |z] <5
otherwise.

(6)

The purpose of identifying special nodes in the frozen bit se-
quence is to decode them without traversing their child nodes.
Consequently, the leaf LLR magnitudes that are required to
evaluate the metric for DSCF decoding in (2)-(6) are not com-
puted. Hence, we show how to perform the metric computa-
tions for special nodes without considering them. Note that
the following approaches for special node decoding can be
applied to DSCF decoding with or without the approximation
presented in Section 3.
Let us split the metric calculation of DSCF:
Mo (€)= |L0[5W71]iw| + Z |LO [gwfl}j‘ + Sa(&w).
~—_———

ACE I

MY (&)
(N
Observe that M (&,,) takes a value only if the index 4,, is a
candidate for bit-flipping during a future decoding iteration.
On the other hand, M/ (&,,) is set to 0 at the beginning of any
extra decoding attempt and accumulated for each leaf index j

o DSCF using f* —— DSCF using fa - - - SC-Oracle ‘

FER

SNR (dB)

Fig. 2. FER performance comparison of DSCF decoding with
and without the proposed approximation. Polar codes with
N =1024and R € {1,1,3}, C = 16, w € {1,2,3} with
Tinaz € {10,40,200}.

as follows:
M (€0); = M(Eu)j—1
+ [L0u-1;if j € Eun
+ fa(|LO[Eu1]s]) if § € A (8)

We now provide a way to compute M/, (€,,) and M/ (E,)
when a Rep or a Rate-1 nodes are encountered during DSCF
decoding. Note that the decoding of Rate-0 nodes for DSCF
decoding is the same as [12] since it does not have any non-
frozen indices; this has been addressed previously in [14] for
SCF decoding.

Let consider the tree representation of a Rep node. By
definition, only the last leaf index is non-frozen. Thus, the
LLR in the last leaf node obtained through SC decoding is
equal to the sum of all LLRs in the root node; and only one
flipping-event is possible. Therefore, for a Rep node of size
N, at decoding tree stage S’ with its first leaf index being j,

we can write
>

1EN,
1fJRep S Ew 1- (10)

€))

JRep -

d L

M(/)L/(gw)jRep = M”(g ] 1 + f(l (
1€EN,

+ > L8

1€EN,

wlz

Thus, if the corresponding flipping event is selected during
an extra decoding attempt, all the N, partial sums at level .S
have to be flipped. Note that the proposed metric calculation
and update for Rep nodes are exact, meaning they produce the
same output under DSCF decoding.

By definition, Rate-1 nodes do not involve any frozen bits.
Thus, they correspond to an uncoded sequence and all the in-
dices at the top of the node are considered for bit-flipping.
We therefore use the top-level LLRs directly in metric calcu-
lations for the prospective flipping indices. For a Rate-1 node
of size N,, at decoding tree stage .S, with its first leaf index
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’ — DSCF[11] --- DSCF using Rate-1 nodes

SNR=6.0dB_

§ SNR=1.5dB 1
10-1 ,\\——-—-.._._._.,_.__é__

FER

SNR=7.0dB
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Tmaz
(b) PC(1024, 896)

T T T T

0 100 200 300 400 0
Tmaz

(a) PC(1024,512)

Fig. 3. FER performance of DSCF decoding with and without
using Rate-1 nodes, with respect to a wide range of T},4,
values. C' = 16, w = 3. fao—0.3(x) is not approximated.

being j, M/,(&,) is calculated for each index ¢ (0 < i < N,)
within the node, such that

L(E)jri = [L°[€w—1i] »

and M/ (&,,) is updated only once per node, such that

1)

Mg (Ew) jraes = MG (E0)j—1
+ Y il + D fallLF[Eu)jral)
1EN, 1€EN,
{j+i}€€u—1

12)

Unlike in Rep nodes, the proposed metric for Rate-1 nodes is
not exact. Indeed, flipping one hard decision at the leaf side
of a Rate-1 node may correspond to multiple flips in the par-
tial sums found at its root. In order to validate our approach
for Rate-1 nodes in DSCF decoding, Fig. 3 depicts how the
FER evolves with T,,,, and three different SNR values for
PC(1024,512) and PC(1024, 896), with w = 3. The frozen
set associated with these polar codes exhibit 46% and 87%
indices that fall under Rate-1 nodes. It can be seen that the
error-correction performance with Rate-1 nodes is similar to
that of the original DSCF algorithm, while computations are
saved since the decoding tree is pruned.

5. COMBINATION OF THE SIMPLIFICATIONS

We now combine the simplifications proposed in the two pre-
vious sections and discuss some numerical analysis.

Fig. 4 presents the error correction performance of DSCF
decoding using the constant approximation from (6) and the
special node decoding techniques from (9)-(12), against base-
line DSCF decoding from [11] and CRC-aided SCL (CA-
SCL) decoding with L € {4,8,16}. DSCF decoders are
simulated with w € {2,3} with T},4, of 40 and 200, respec-
tively. According to Fig. 4, DSCF decoding with the proposed
simplifications has a similar FER performance to the origi-
nal DSCF algorithm, and the loss is negligibly small even at
w = 3. Proposed DSCF with w = 2 and w = 3 is able to
outperform CA-SCL with L = 4 and L = 8§, respectively.

CA-SCL L=4 L=38 L =16

DSCF[11] —mse—w =2 ——w =3
This Work —6—w =2 —4—w =3

FER

T T T T T
1 125 15 17 2 225 25 275 3 3.25
SNR (dB)

Fig. 4. FER comparison of the proposed simplified DSCF
decoding against baseline DSCF and CA-SCL decoders.
P(C(1024,512),C = 16.

—_

=)
Tt
I

1 DSCF [11] ——w = 2 ——w = 3
: This Work —o— w =2 —a—w = 3

D

Avg. # of Dec. Steps

k T T T T T
1.5 1.75 2 225 25 275 3 3.25 3.5

SNR (dB)

Fig. 5. Comparison of average number of decoding steps for
proposed simplified DSCF decoding and baseline DSCF de-
coding. PC(1024,512),C = 16.

Fig. 5 shows the average number of decoding steps under
DSCEF decoding, with and without the proposed simplifica-
tions. One decoding step follows the definition in [1]. The
proposed special node decoding techniques reduce the aver-
age number of steps for DSCF decoding significantly, by up
to 6.4x. Moreover the transcendental operations are not re-
quired anymore.

6. CONCLUSION AND FUTURE WORK

We proposed a simple approximation to replace the logarith-
mic and exponential computations of the DSCF decoding.
The proposed approximation allows to reduce the computa-
tional effort of DSCF tremendously and its hardware imple-
mentation can be considered. In addition, we showed how
to incorporate fast decoding techniques for DSCF decoding.
We showed that all the proposed approximations and sim-
plifications can be applied to DSCF decoding independently,
and they do not alter its error-correction performance signifi-
cantly. The proposed fast decoding techniques for DSCF has
reduced the computational complexity by up to 6.4x. Fu-
ture research directions involve decoding of more sophisti-
cated special node patterns under DSCF decoding and hard-
ware implementations with the proposed simplifications.
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